Total Synthesis of Bleomycin \mathbf{A}_{2} and Related Agents. 2. Synthesis of (-)-Pyrimidoblamic Acid, epi-(+)-Pyrimidoblamic Acid, (+)-Desacetamidopyrimidoblamic Acid, and $(-)$-Descarboxamidopyrimidoblamic Acid

Dale L. Boger, ${ }^{*}$ Takeshi Honda, and Qun Dang
Contribution from the Department of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California 92037

Received October 5, 1993*

Abstract

Full details of concise syntheses of (-)-pyrimidoblamic acid (1), the authentic heterocyclic core of the bleomycin A_{2} metal binding domain, as well as the key substructure analogs epi-(+)-pyrimidoblamic acid (2), (+)desacetamidopyrimidoblamic acid (3), and (-)-descarboxamidopyrimidoblamic acid (4) are described. Key to the approach is the implementation of an inverse electron demand [$4+2$] cycloaddition reaction of 2,4,6-tris(ethoxycarbonyl)-1,3,5-triazine with 1-(dibenzylamino)-1-propyne or in situ generated 1,1-diaminopropene for the one-step preparation of an appropriately functionalized pyrimidine nucleus. The development and subsequent implementation of a diastereoselective imine addition reaction of optically active N-acyloxazolidinone enolates provided a stereocontrolled introduction of the pyrimidoblamic acid C2 acetamido side chain. Chemical studies which unambiguously establish and confirm the absolute configuration of the C 2 acetamido side chain are detailed, and their extension to the synthesis of (-)-descarboxamidopyrimidoblamic acid (4) is described.

The bleomycins are a family of glycopeptide antitumor antibiotics possessing clinically useful activity thought to be mediated through their metal-dependent oxidative cleavage of duplex DNA ${ }^{1}$ (Figure 1). Consequently, bleomycin A_{2}, its naturally occurring congeners, its semisynthetic derivatives and degradation products, and synthetic analogs have been the subject of extensive investigations in efforts to define the fundamental functional roles of its structural subunits. In the preceding article, we provided full details of concise syntheses of tri-, tetra-, and pentapeptide S as well as a series of structural analogs and the determination of their DNA binding properties. ${ }^{2}$ Herein we provide full details of the synthesis of (-)-pyrimidoblamic acid (1), ${ }^{3-5}$ epi-(+)-pyrimidoblamic acid (2),4,5 (+)-desacetamidopyrimidoblamic acid (3), ${ }^{4,6}$ and (-)-descarboxamidopyrimidoblamic acid (4) in efforts that represent a systematic exploration of the key structural features of the metal binding domain of bleomycin $\mathrm{A}_{2}{ }^{1}$ Extensive studies from the Umezawa-Ohno

[^0]

Figure 1.
laboratories have defined a number of seminal features of the pyrimidoblamic subunit through chemical derivatization or degradation of the natural product ${ }^{7}$ and through chemical synthesis, ${ }^{8}$ and a number of additional simplified metal binding domains have been evaluated in the laboratories of others. $4,5,9-13$ Complementary to the efforts disclosed to date, our recent observation of the potentiating DNA cleavage effects of the C2
acetamido side chain of $\mathrm{P}-3 \mathrm{~A}^{13}$ and deglycobleomycin $\mathrm{A}_{2}{ }^{6}$ in addition to the proposed rapid metabolic inactivation of bleomycin A_{2} through bleomycin hydrolase ${ }^{7 \mathrm{~b}, 14}$ hydrolysis of the carboxamide have suggested fundamental modifications of the pyrimidoblamic acid subunit that have yet to be explored. Concurrent with such efforts, a study of the bleomycin A_{2} analogs incorporating modified pyrimidoblamic acid subunits could be expected to permit an assessment of the role each substituent may play in contributing to metal chelation, O_{2} activation, and DNA cleavage efficiency as well as the fundamental role the subunit may play in controlling the characteristic 5'-GC/GT DNA cleavage selectivity. ${ }^{15}$ The diastereoselective synthesis of (-)-pyrimidoblamic acid (1) detailed herein concisely installs the two remaining acyclic stereogenic centers of the natural aglycone. Notably, this represents the first reported approach which permits control of the relative and absolute stereochemistry of the $\mathbf{C} 2$ acetamido side chain of 1 and does so in a concise manner readily adaptable to the concurrent preparation of analogs. In realization of efforts to prepare by chemical synthesis bleomycin A_{2} analogs possessing deep-seated structural changes for subsequent evaluation, the extension of the studies to the synthesis of 2-4 is additionally detailed. Pertinent to the studies detailed herein, the C2 acetamido side chain and the carboxamido group of the bleomycins have been shown not to be intimately involved in the key metal chelation and oxygen activation event required for DNA cleavage. ${ }^{1}$ Thus, 2-4 constitute important substructures of the pyrimidoblamic acid subunit accessible only through chemical synthesis. These agents along with (-)-desmethylpyrimidoblamic acid, epi-(+)desmethylpyrimidoblamic acid, and (+)-desmethyldesacetamidopyrimidoblamic acid disclosed in recent efforts ${ }^{13}$ provide a key
(7) (a) Epibleomycin A_{2} : Muraoka, Y.; Kobayashi, H.; Fujii, A.; Kunishima, M., Fujii, T.; Nakayama, Y.;Takita, T.;Umezawa, H. J. Antibiot. 1976, 29, 853. (b) Deamidobleomycin A2: Umezawa, H.; Hori, S.; Sawa, T.; Yoshioka, T.; Takeuchi, T. J. Antibiot. 1974, 27, 419. (c) Depyruvamidobleomycin A2: Sugiura, Y. J. Am. Chem. Soc. 1980, 102,5208. (d) N-Methyland N, N-dimethylbleomycin A_{2} : Fukuoka, T.; Muraoka, Y.; Fujii, A.; Naganawa, H.; Takita, T.; Umezawa, H. J. Antibiot. 1980, 33, 114.
(8) Owa, T.; Haupt, A.; Otsuka, M.; Kobayashi, S.; Tomioka, N.; Itai, A.; Ohno, M.; Shiraki, T.; Uesugi, M.; Sugiura, Y.; Maeda, K. Tetrahedron 1992, 48, 1193. Otsuka, M.; Masuda, T.; Haupt, A.; Ohno, M.; Shiraki, T.; Sugiura, Y.; Maeda, K. J. Am. Chem. Soc. 1990, 112, 838. Kittaka, A. Sugano, Y.; Otsuka, M.; Ohno, M. Tetrahedron 1988, 44, 2811, 2821. Suga, A.; Sugiyama, T.; Sugano, Y.; Kittaka, A.; Otsuka, M.; Ohno, M.; Sugiura, Y.; Maeda, K. Synlett 1989, 70 . Kittaka, A.; Sugano, Y.; Otsuka, M.; Ohno, M.; Sugiura, Y.; Umezawa, H. Tetrahedron Lett. 1986, 27, 3631, 3635. Otsuka, M.; Kittaka, A.; Ohno, M.; Suzuki, T.; Kuwahara, J.; Sugiura, Y.; Umezawa, H. Tetrahedron Lett. 1986, 27, 3639. Otsuka, M.; Yoshida, M.; Kobayashi, S.; Ohno, M.; Sugiura, Y.; Takita, T.; Umezawa, H. J. Am. Chem. Soc. 1981, 103, 6986.
(9) Kenani, A.; Bailly, C.; Helbecque, N.; Houssin, R.; Bernier, J. L. Henichart, J. P. Eur. J. Med. Chem. 1989, 24, 371. Kenani, A.; Lohez, M.; Houssin, R.; Helbecque, N.; Bernier, J. L.; Lemay, P.; Henichart, J. P. AntiCancer Drug Des. 1987, 2, 47. Henichart, J.-P.; Houssin, R.; Bernier, J.-L.; Catteau, J.-P. J. Chem. Soc., Chem. Commun. 1982, 1295.
(10) Guajardo, R. J.; Hudson, S. E.; Brown, S. J.; Mascharak, P. K. J. Am. Chem. Soc. 1993, 115 , 7971 . Tan, J. D.; Hudson, S. E.; Brown, S. J.; Olmstead M. M.; Mascharak, P. K. J. Am. Chem. Soc. 1992, 114, 3841. Brown, S. J.; Hudson, S. E.; Mascharak, P. K.; Olmstead, M. M. J. Am. Chem. Soc. 1989, 111, 6446. Brown, S. J.; Hudson, S. E.; Stephan, D. W.; Mascharak, P. K. Inorg. Chem. 1989, 28, 469. Brown, S. J.; Stephan, D. W.; Mascharak, P. K. J. Am. Chem. Soc. 1988, 110, 1996.
(11) Lomis, T. J.; Siuda, J. F.; Shepherd, R. E. J. Chem. Soc., Chem. Commun. 1988, 290.
(12) Boger, D. L.; Menezes, R. F.; Dang, Q.; Yang, W. Bioorg. Med. Chem. Lett. 1992, 2, 261.
(13) Boger, D. L.; Honda, T.; Menezes, R. F.; Colletti, S. L.; Dang, Q.; Yang, W. J. Am. Chem. Soc. 1994, 116, 82. Boger, D. L.; Dang, Q. J. Org. Chem. 1992, 57, 1631. Boger, D. L.; Yang, W. Bioorg. Med. Chem. Lett. 1992, 2, 1649.
(14) Umezawa, H.; Hori, S.; Sawa, T.; Yoshioka, T.; Takeuchi, T. J. Antibiot. 1974, 27, 419. Nishimura, C.; Suzuki, H.; Tanaka, N.; Yamaguchi, H. Biochem. Biophys. Res. Commun. 1989, 163, 788. Sebti, S. M.; DeLeon, J. C.; Lazo, J. S. Biochemistry 1987, 26, 4213. Nishimura, C.; Tanaka, N.; Suzuki, H.; Tanaka, N. Biochemistry 1987, 26, 1574. Enenkel, C.; Wolf, D. H. J. Biol. Chem. 1993, 268, 7036. Sebti, S. M.; Mignano, J. E.; Jani, J. P.; Srimatkandada, S.; Lazo, J. S. Biochemistry 1989, $28,6544$.
(15) Shipley, J. B.; Hecht, S. M. Chem. Res. Toxicol. 1988, 1, 25. Carter, B. J.; Murty, V. S.; Reddy, K. S.; Wang, S.-N.; Hecht, S. M. J. Biol. Chem 1990, 265, 4193. Carter, B. J.; Reddy, K. S.; Hecht, S. M. Tetrahedron 1991, 47, 2463.

Scheme 1

series of structurally modified pyrimidoblamic acid analogs. Their incorporation into a full range of structural analogs of deglycobleomycin A_{2} is detailed in the accompanying article. ${ }^{16}$

The approach to the authentic and modified pyrimidoblamic acid subunits is based on the inverse electron demand DielsAlder reaction ${ }^{17}$ of 2,4,6-tris(ethoxycarbonyl)-1,3,5-triazine (5) ${ }^{13,18,19}$ for the preparation of the pyrimidine nucleus central to the structure of the agents. Key to the completion of the synthesis of (-)-pyrimidoblamic acid was the development and implementation of a diastereoselective imine addition reaction of optically active N-acyloxazolidinones for the stereocontrolled introduction of the C 2 acetamido side chain. ${ }^{20}$ Chemical studies which establish and confirm the absolute configuration of the C2 acetamido side chain are detailed, and their extension to the diastereoselective synthesis of 4 is described.

1,3,5-Triazine \rightarrow Pyrimidine Heteroaromatic Diels-Alder Reaction: Synthesis of the Pyrimidine Core. Two concise approaches to the preparation of 9 based on the $[4+2]$ cycloaddition of 2,4,6-tris(ethoxycarbonyl)-1,3,5-triazine (5) have been developed (Scheme 1). Treatment of 5, prepared in one step by the acid-catalyzed trimerization of ethyl cyanoformate ($95-100 \%$), ${ }^{18}$ with 1 -(dibenzylamino)propyne ($6,{ }^{21} 2$ equiv) provided 8 in excellent yield ($95-98 \%$) under thermal reaction conditions ($101^{\circ} \mathrm{C}$, dioxane, 21 h). The room temperature [4 $+2]$ cycloaddition reaction of 5 with 6 is followed by a subsequent retro Diels-Alder reaction with loss of ethyl cyanoformate, and it is the rate of the cycloreversion reaction that dictates the required

[^1]Table 1. Representative Results of a Study of the [4+2] Cycloaddition Reactions of 5 with 6 and 7

entry	conditions	product	yield (\%)
1	DMF, $90^{\circ} \mathrm{C}, 29 \mathrm{~h}$	9	75
2	DMF, $100^{\circ} \mathrm{C}, 72 \mathrm{~h}$	9	80
3	DMF, $110^{\circ} \mathrm{C}, 22 \mathrm{~h}$	9	65
4	DMF, $120^{\circ} \mathrm{C}, 48 \mathrm{~h}$	9	53
5	DMF, $130^{\circ} \mathrm{C}, 29 \mathrm{~h}$	9	46
6	DMF, $140^{\circ} \mathrm{C}, 26 \mathrm{~h}$	9	44
7	DMF, $\mathrm{K}_{2} \mathrm{CO}_{3}, 100^{\circ} \mathrm{C}, 48 \mathrm{~h}$	9	45
8	PhCH $_{3}, \mathrm{CH}_{3} \mathrm{CO} \mathrm{O}_{2} \mathrm{H}, 100^{\circ} \mathrm{C}, 72 \mathrm{~h}$	9	7
9	dioxane, $101^{\circ} \mathrm{C}, 48 \mathrm{~h}$	9	0
10	dioxane $, 101^{\circ} \mathrm{C}, 21 \mathrm{~h}$	8	95
11	$\mathrm{CH}_{3} \mathrm{CN}, 82^{\circ} \mathrm{C}, 12 \mathrm{~h}$	8	73

thermal reaction conditions. Acid-catalyzed debenzylation of 8 under vigorous conditions $\left(\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}, 13 \mathrm{~h}, 75 \%\right)$ provided 9, and initial efforts to effect the conversion of 8 to 9 through catalytic hydrogenolysis proved less successful. In general, the deprotection of 8 under a range of alternative conditions gave predominantly the monodebenzylation product in addition to recovered starting material. Alternatively, 9 was derived directly and conveniently in one step by treatment of 5 with propionamidine hydrochloride $\left(7,100^{\circ} \mathrm{C}, \mathrm{DMF}, 72 \mathrm{~h}, 80 \%\right)$ in a reaction cascade that proceeds with thermal tautomerization of 7 to 1,1 -diaminopropene and its [$4+2$] cycloaddition reaction with 5. The sequential elimination of ammonia, imine to enamine tautomerization, and subsequent retro Diels-Alder loss of ethyl cyanoformate under the reaction conditions provided 9 directly in excellent yield. The use of a polar aprotic solvent, the use of the hydrochloride salt of 7, and the carefully defined thermal conditions facilitate both the amidine tautomerization and aromatization of the initial cycloadduct (Table 1). Notably, the use of lower reaction temperatures ($<80^{\circ} \mathrm{C}$) provided lower conversions to 9 presumably due to inadequate a midine to enamine tautomerization. Higher reaction temperatures ($>100^{\circ} \mathrm{C}$) similarly provided lower conversions to 9 and presumably may be attributed to competitive reactions of the substrates, 9 , and the reaction cascade intermediates under the more vigorous reaction conditions. The use of the propionamidine free base resulted in lower yields of $9\left(45 \%\right.$, DMF, $\left.100^{\circ} \mathrm{C}, 48 \mathrm{~h}\right)$, and efforts to employ the corresponding methyl imidate or imidate hydrochloride proved significantly less successful.

Synthesis of (+)-Desacetamidopyrimidoblamic Acid (3). Key to the use of 9 in the synthesis of 1-4 was the selective differentiation of the pyrimidine C2 and C4 ethyl esters. This transformation was accomplished through selective reduction of the sterically and electronically more accessible C2 ethoxycarbonyl group of 9 to provide 10 . Characteristic of the enhanced electrophilic nature of the C2 ethoxycarbonyl group responsible for the selective reduction, the reaction was effectively conducted with sodium borohydride at low temperature (1.0 equiv, EtOH , $5^{\circ} \mathrm{C}, 150 \mathrm{~h}, 70 \%$; Scheme 2). In a study of the reduction of 9 , it was observed that the selectivity of the competitive C2 and C4 ethoxycarbonyl reductions improved as the reactivity of the reagent was reduced and the reaction temperature was lowered (Table 2). A number of more reactive reducing agents conventionally employed to reduce esters failed to provide the required C 2 versus C 4 reduction selectivity including LiBH_{4}, DIBAL.H, and L- and K-Selectride. 2D ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY NMR of the isomeric alcohols unambiguously confirmed the isomer assignments through observation of a diagnostic $\mathrm{CH}_{2} \mathrm{OH} / \mathrm{C} 5-\mathrm{CH}_{3} \mathrm{NOE}$ crosspeak for the minor isomer and its absence with 10. Alternative efforts to differentiate the C2 and C4 ethyl esters through selective acid- or base-catalyzed hydrolysis, transesterification, or aminolysis proved less successful and less direct than the selective NaBH_{4} reduction of 9 .

Conversion of 10 to the tosylate 11 (99\%), which proceeded cleanly without competitive sulfonamide generation, followed by

Scheme 2

Table 2. Representative Results of the Selective Reduction of 9

entry	conditions ${ }^{\text {a }}$	2:4-CH2OH	yield (\%)
1	$\begin{gathered} t \mathrm{BuOH}-\mathrm{EtOH}(5: 1), \\ 80^{\circ} \mathrm{C}, 1 \mathrm{~h} \end{gathered}$	2:1	30
2	$\mathrm{EtOH}, 25^{\circ} \mathrm{C}, 15 \mathrm{~h}$	4:1	49
3	EtOH, $10^{\circ} \mathrm{C}, 108 \mathrm{~h}$	23:1	51
4	$\mathrm{EtOH}, 5^{\circ} \mathrm{C}, 150 \mathrm{~h}$	28:1	70
5	$\mathrm{MeOH},-25^{\circ} \mathrm{C}, 72 \mathrm{~h}$	no reaction	0
6	$\begin{gathered} \mathrm{Me}_{4} \mathrm{NBH}_{4}, \mathrm{EtOH}, \\ 25^{\circ} \mathrm{C}, 96 \mathrm{~h} \end{gathered}$	17:1	36
7	$\begin{aligned} & \mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}, \\ & \mathrm{THF}-\mathrm{Et}_{2} \mathrm{O}(1: 1), 25^{\circ} \mathrm{C} \end{aligned}$	6:1	10

${ }^{a} \mathrm{NaBH}_{4}$ unless indicated otherwise.
clean displacement with $\mathbf{1 2}^{13}$ (4 equiv, 2 equiv of NaHCO_{3}, $\mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}, 10 \mathrm{~h}$) and subsequent protection of the secondary amine provided 13 (91% overall for two steps). Hydrolysis of the ethyl ester (LiOH, 96-100\%) provided the N^{α}, N^{3}-bis ($($ tertbutyloxy)carbonyl) derivative of desacetamidopyrimidoblamic $\operatorname{acid}(14),[\alpha]^{22} \mathrm{D}-9.2\left(c 0.25, \mathrm{CH}_{3} \mathrm{OH}\right)\left(\mathrm{lit}^{4 \mathrm{a}}[\alpha]^{25_{\mathrm{D}}}-8.9\right.$ (c 1.25 , $\mathrm{CH}_{3} \mathrm{OH}$), and subsequent acid-catalyzed deprotection ($3 \mathrm{~N} \mathrm{HCl}-$ EtOAc, $25^{\circ} \mathrm{C}, 30 \mathrm{~min}, 90 \%$) of 14 provided (+)-desacetamidopyrimidoblamic acid (3), $[\alpha]^{22} \mathrm{D}+8.1$ (c $\left.0.15,0.1 \mathrm{~N} \mathrm{HCl}\right)$.

Diastereoselective \boldsymbol{N}-Acyloxazolidinone Enolate-Imine Addition Reaction: Preparation of (-)-Pyrimidoblamic Acid (1) and epi-(+)-Pyrimidoblamic Acid (2). The final strategic element necessary for completion of the synthesis of pyrimidoblamic acid was the stereocontrolled introduction of the C2 acetamido side chain. Prior studies have relied on nonselective chemical approaches requiring a separation of the resulting $1: 1$ mixture of diastereomers. ${ }^{4}$ In parallel with studies on the total synthesis of P-3A, ${ }^{13}$ we have examined the potential diastereoselective addition of optically active enolates with imines and found that the use of the Evans' N-acyloxazolidinones ${ }^{22}$ provided a diastereoselective imine addition reaction suitable for the C 2 acetamido side chain introduction. ${ }^{20}$

Oxidation of 10 (10 equiv of $\mathrm{MnO}_{2}, \mathrm{CH}_{3} \mathrm{CN}, 82^{\circ} \mathrm{C}, 3 \mathrm{~h}, 83 \%$) followed by condensation of 15 with $12^{13}(98-100 \%)$ afforded 16 (Scheme 3). The modest conversions observed under standard MnO_{2} oxidation conditions (10 equiv, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 25-40 \%$) that may be attributed principally to the limited solubility of $\mathbf{1 0}$ and 15 were improved upon conducting the reaction in refluxing acetonitrile. Further use of dilute reaction conditions (0.05 M) eliminated a minor competitive self condensation reaction with imine formation and provided excellent conversions of 10 to 15. A range of alternative oxidants including $\mathrm{PCC}, \mathrm{PDC}, \mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 25 \%$), and TFAA-DMSO were not as successful at providing 15 due to the solubility properties of the substrate under conventional reaction conditions.

Addition of the stannous (Z)-enolate 17, generated by treatment

[^2] 1.

Scheme 3

 $80 \cdot 85 \% \longrightarrow 23 \mathrm{R}^{1}=\mathrm{NH}_{2}, \mathrm{R}=\mathrm{Et}$
of the corresponding oxazolidinone ${ }^{23}$ (1 equiv, THF, $-20^{\circ} \mathrm{C}, 1$ h) with $i \mathrm{Pr}_{2} \mathrm{NEt}$ (2.2 equiv) in the presence of $\mathrm{Sn}\left(\mathrm{OTf}_{2}{ }_{2}\right.$ (2.0 equiv), to 16 (0.5 equiv) provided a separable 87:13 mixture of the imine addition adducts 18 a and 18 b (THF, $0^{\circ} \mathrm{C}, 12 \mathrm{~h}, 81-$ 85%). The prescribed reaction conditions were derived only through considerable experimentation and ultimately provided the opportunity to use a minimal number of protecting groups for the potentially reactive functionality found in imine 16. Key to the success of the diastereoselective imine addition reaction ${ }^{24,25}$ was the use of the stannous enolate ${ }^{25 c} \cdot 26,27$ (2.0 equiv) in the presence of two additional equivalents of $\mathrm{Sn}(\mathrm{OTf})_{2}$, and under such conditions the major anti-18a adduct was found to slowly epimerize to syn-18a ($0^{\circ} \mathrm{C}, 12 \mathrm{~h}, 16: 1$ anti:syn-18a versus $0^{\circ} \mathrm{C}$,

[^3]$24 \mathrm{~h}, 1.8: 1$ anti:syn-18a). The stannous enolate 17 proved much more effective than the titanium enolate ${ }^{28,29}$ ($20-30 \%$ yield, $9: 1$ 18a and 18b), which provided the same products with a comparable level of diastereoselection but in much lower conversions, and the corresponding di- n-butylboronyl enolate of 17 proved ineffective. The stannous enolate of ($4 S, 5 R$)-3-acetyl-4-methyl-5-phenyl-2-oxazolidinone provided a $1: 1$ mixture of 19 and 22 (56%), indicating an important role for the thiomethyl group of 17 in the diastereoselection of the imine addition reaction. The analogous stannous enolate of (4S,5R)-2-((phenylthio)acetyl)-4-methyl5 -phenyl-2-oxazolidinone provided the imine adducts with a comparable diastereoselectivity ($9: 1,72 \%$) but in slightly lower chemical conversion, and the adduct diastereomers were not readily separable. Reductive desulfurization of the major diastereomer, anti-18a as well as syn-18a ($\mathrm{Bu}_{3} \mathrm{SnH}, 89-95 \%$), followed by aminolysis of $19\left(16 \% \mathrm{NH}_{3}-\mathrm{EtOH}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 80-\right.$ 85%) provided 20; $[\alpha]^{25}{ }_{\mathrm{D}}-10.8(c 0.36, \mathrm{EtOH})$ (lit ${ }^{4 \mathrm{e}}[\alpha]^{25}{ }_{\mathrm{D}}-7.5$ ($c 1.0, \mathrm{EtOH}$). Longer reaction periods for the reaction with NH_{3} led to subsequent aminolysis of the ethyl ester. Hydrolysis of the ethyl ester 20 ($\mathrm{LiOH}, 90-95 \%$) provided the wellcharacterized N^{α}-((tert-butyloxy)carbonyl) derivative of (-)pyrimidoblamic acid $21, \mathrm{mp} 220-222^{\circ} \mathrm{C},[\alpha]^{25} \mathrm{D}-35.6(c 0.8$, $\mathrm{H}_{2} \mathrm{O}$) (lit ${ }^{4 \mathrm{a}} \mathrm{mp} 220-222^{\circ} \mathrm{C},[\alpha]^{28} \mathrm{D}-33.6$ and -32.8 (c 0.75, $\mathrm{H}_{2} \mathrm{O}$)). Acid-catalyzed deprotection ($3 \mathrm{~N} \mathrm{HCl}-\mathrm{EtOAc}, 25^{\circ} \mathrm{C}$, $1 \mathrm{~h}, 100 \%$) of 21 provided (-)-pyrimidoblamic acid (1), $[\alpha]^{25} \mathrm{D}$ $-27\left(c 0.12, \mathrm{H}_{2} \mathrm{O}\right)$. Subjection of the minor diastereomer 18b ($>20: 1$ anti:syn) to the identical sequence provided 22-24, $\mathrm{mp} 221-223^{\circ} \mathrm{C},[\alpha]^{25} \mathrm{D}+20.8\left(c 0.44, \mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{lit}^{4 \mathrm{a}} \mathrm{mp} 221^{\circ} \mathrm{C}\right.$, $[\alpha]^{25} \mathrm{D}+20.8\left(c 0.65, \mathrm{H}_{2} \mathrm{O}\right)$) and epi-(+)-pyrimidoblamic acid (2), $[\alpha]^{25} \mathrm{D}+20.1\left(c 0.11, \mathrm{H}_{2} \mathrm{O}\right)$.

The diastereoselection observed in the imine addition reaction which we have investigated in some detail deserves further discussion. Unlike the boron enolate, which might be anticipated to react as a nonchelated enolate through a closed-chair transition state to provide the Evans' syn addition product, ${ }^{22,23}$ the expanded coordination sphere of tin (II) like that of titanium(IV) ${ }^{28,29}$ was expected to permit reaction of the chelated enolate 17 with 16 with the additional complexation and activation of the imine to provide the non-Evans' syn imine addition product. However, the reaction provided not the chelated enolate syn imine addition product but rather the corresponding chelated enolate anti adduct as the major product. In retrospect, this potentially may be attributed to reaction of the imine in its preferred E configuration with both large imine substituents occupying axial positions in a closed-chair transition state further reinforced through additional internal chelation of the imine pyrimidinyl nitrogen with tin(II). ${ }^{27}$ Although it is not possible to rule out reaction of the chelated (Z)-enolate 17 with imine 16 activated by external coordination to the added Lewis acid and proceeding through an open transition state, ${ }^{30}$ the lack of reaction of the corresponding di- n-butylboronyl (Z)-enolate with 16 in the presence of added Lewis acid catalysts $\left(\mathrm{Sn}\left(\mathrm{OTf}_{2}, \mathrm{Et}_{2} \mathrm{AlCl}\right)\right.$ suggests this may prove unlikely.
The assignment of the relative and absolute stereochemistry of the imine addition products was made based on the following observations. Reductive desulfurization of anti-18a and syn-18a both provided 19, which was found to possess the natural S configuration at the newly introduced amine center through conversion to natural (-)-pyrimidoblamic acid (1). In addition, deliberate epimerization of the major addition product (anti18a) provided syn-18a, isomeric at the thiomethyl center. In
(26) Evans, D. A.; Weber, A. E. J. Am. Chem. Soc. 1986, 108, 6757. Evans, D. A.; Gage, J. R.; Leighton, J. L.; Kim, A. S. J. Org. Chem. 1992, 57, 1961.
(27) Kobayashi, S.; Hachiya, I. J. Org. Chem. 1992, 57, 1324.
(28) Nerz-Stormes, M.; Thornton, E. R. J. Org. Chem. 1991, 56, 2489.
(29) Evans, D. A.; Clark, J. S.; Metternich, R.; Novack, V. J.; Sheppard, G. S. J. Am. Chem. Soc. 1990, 112, 866.
(30) Walker, M. A.; Heathcock, C. H. J. Org. Chem. 1991, 56, 5747. Danda, H.; Hansen, M. M.; Heathcock, C. H. J. Org. Chem. 1990, 55, 173.

Scheme 4

Eelmerization
syn-18a $\frac{\mathrm{NaBH}_{4} ;}{\mathrm{COCl}_{2}}$

anti-18b

contrast, desulfurization of anti-18b provided 22, which proved to be a diastereomer of 19. The relative stereochemistry of anti18a, syn-18a, and anti-18b was established upon conversion to the cyclic carbamates 25-27 (Scheme 4).

For the cyclic carbamate $\mathbf{2 5}$ derived from the major addition product, the $\mathrm{C} 4-\mathrm{H} / \mathrm{C} 5-\mathrm{H}$ coupling constant was determined to be 1.5 Hz , diagnostic of an equatorial-equatorial $\mathrm{H}-5 / \mathrm{H}-4$ relationship, and proved analogous to that of 28 for which a singlecrystal X-ray structure had unambiguously established the trans stereochemistry. ${ }^{20}$ Notably, the cyclic carbamate 25 adopts a conformation in which both the thiomethyl and aryl substituents occupy axial positions, and is the result of the lack of 1,3-diaxial $\mathrm{MeS} / \mathrm{H}$ interactions and the presence of a single 1,3-diaxial Ar/H interaction within the preferred diaxial conformation. The alternative diequatorial conformation suffers from two significant and destabilizing gauche interactions of the vicinal ring substituents. Similarly, carbamate 27 derived from the minor imine addition product exhibits a $\mathrm{C} 4-\mathrm{H} / \mathrm{C} 5-\mathrm{H}$ coupling constant of 1.2 Hz , characteristic of the trans stereochemistry, and, like 25 , is derived from an imine addition product possessing the anti stereochemistry. In contrast, carbamate 26 derived from syn18a exhibited a characteristic $\mathrm{C} 4-\mathrm{H} / \mathrm{C} 5-\mathrm{H}$ coupling constant of 5.6 Hz , diagnostic of an axial-equatorial $\mathrm{H}-4 / \mathrm{H}-5$ relationship in which H-5 occupies an axial position. Consistent with these assignments, the $\mathrm{C} 5-\mathrm{H} w_{1 / 2}$ values of $6.8 \mathrm{~Hz}(25$ and 27$)$ and 19.4 Hz (26) were observed and proved diagnostic of an equatorial
and axial $\mathrm{C} 5-\mathrm{H}$, respectively. Further consistent with the assignments, 25 and 27 exhibited ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOE crosspeaks in the 2D-NOESY NMR for MeS/H-6a, H-5, and H-4. Notably, crosspeaks for MeS/H-6b and H-4/H-6a were not observed and would be diagnostic of an equatorial versus axial thiomethyl substituent and a 1,3 -diaxial H-4/H-6a relationship, respectively. Carbamate 26 exhibited ${ }^{1} \mathrm{H}-1 / \mathrm{H}$ NOE crosspeaks in the 2DNOESY NMR for MeS/H-6a, H-6b, H-4, and H-5 as well as a diagnostic $\mathrm{H}-6 \mathrm{~b} / \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ crosspeak, and no $\mathrm{H}-4 / \mathrm{H}-6 \mathrm{a}$ crosspeak was observed. The former are consistent with an equatorial versus axial thiomethyl substituent, and the latter two observations are diagnostic of a conformation in which the aryl group occupies an axial position. Finally, calculated coupling constants for H-4/H-5, H-5/H-6a, and H-5/H-6b for the analogous MM2 low-energy conformations of $\mathbf{2 5}$ or 27 (obsd 1.5, 1.5 , and 2.0 Hz ; calcd $1.4,2.6$, and 1.4 Hz) and for 26 (obsd 5.6 , $4.9,8.2 \mathrm{~Hz}$; calcd $4.3,5.2,11.7 \mathrm{~Hz}$) agree with the observed coupling constants of the structural assignments.

Confirmation of the Absolute Stereochemistry. The absolute configuration assigned to the pyrimidoblamic acid and bleomycin A_{2} center which bears the C 2 acetamido side chain was established in a single-crystal X-ray structure determination of 2931,32 derived from a chemical degradation product obtained under vigorous acidic conditions ($6 \mathrm{~N} \mathrm{HCl}, 105^{\circ} \mathrm{C}, 20 \mathrm{~h}$) resulting in partial ($15-30 \%$) epimerization of the amine center under consideration. ${ }^{33,34}$ This partial epimerization of the precursor to 29 coupled with the use of a nonheavy-atom derivative in the crystallographic solution of its absolute configuration has resulted in some concern as to the accuracy of the assigned absolute stereochemistry. This proved to be of special concern since additional spectroscopic properties of 29 provided a tentative assignment of the opposite absolute configuration. ${ }^{31}$ Unfortunately, the existing syntheses of 1 which provided a 1:1 mixture of isomers at the critical amine center have relied on correlation with the natural product to provide their stereochemical assignments and thus have not addressed the confirmation of the pyrimidoblamic acid assigned stereochemistry. In the course of our work, this uncertainty had become an independent concern in the ongoing NMR studies in which the preliminary assignment of the NOEs of bleomycin A_{2} metal complexes was not easily reconciled on the basis of assigned absolute stereochemistry. ${ }^{35}$ This long-standing ambiguity in the absolute stereochemistry of 1 as well as the inability of our own asymmetric synthesis of pyrimidoblamic acid to permit unambiguous assignment of absolute configuration at the C 2 acetamido side chain center provided the incentive for us to establish it by an additional chemical means.

Chemical degradation of naturally derived bleomycin $\mathbf{A}_{2}{ }^{36}$ under strong acidic conditions (6 N aqueous $\mathrm{HCl}, 105^{\circ} \mathrm{C}, 20 \mathrm{~h}$) followed by immediate esterification ($3 \mathrm{~N} \mathrm{HCl}, \mathrm{CH}_{3} \mathrm{OH}$, reflux, 1 h) of the dicarboxylic acid 30 , which itself proved difficult to isolate, provided 31, $[\alpha]^{25_{365}}+26(c 0.15,1 \mathrm{~N} \mathrm{HCl})$. In turn, acid-catalyzed hydrolysis of the readily purified diester 31 (3 N aqueous $\mathrm{HCl}, 100^{\circ} \mathrm{C}, 1 \mathrm{~h}$) provided $30,[\alpha]^{25}{ }_{365}+30(c 0.2,1$ $\mathbf{N ~ H C l})\left(\mathrm{lit}^{31}[\alpha]^{20}{ }_{365}+47.5(c 0.2,1 \mathrm{~N} \mathrm{HCl})(S c h e m e 5)\right.$. Exposure of $\mathbf{2 0}$ to the same set of reaction conditions similarly provided $31(75 \%),[\alpha]^{25}{ }_{365}+37(c 0.15,1 \mathrm{NHCl}),[\alpha]^{25}{ }_{\mathrm{D}}+3.4$ ($c 0.15,1 \mathrm{~N} \mathrm{HCl})$, and $30(94 \%),[\alpha]^{25}{ }_{365}+40(c 0.07,1 \mathrm{~N} \mathrm{HCl})$, confirming the correlation of 18a, 19-21, and 1 with naturally derived material. In contrast, exposure of 23 to the same set of

[^4]Scheme 5

Scheme 6

reaction conditions provided 32 (64\%), $[\alpha]^{25}{ }_{365}-39$ (c 0.14, 1 N $\mathrm{HCl}),[\alpha]^{25} \mathrm{D}-3.7(c 0.14,1 \mathrm{~N} \mathrm{HCl})$, and 33 (94%), $[\alpha]^{25}{ }_{365}-40$ ($c 0.08,1 \mathrm{~N} \mathrm{HCl}$), enantiomeric with 31-30 and confirming the diastereomeric stereochemical assignments for 18b, 22-24, and 2.

With this set of authentic correlation samples in hand, we elected to prepare 30-31 and 32-33 by asymmetric synthesis to permit the unambiguous assignment of stereochemistry. Treatment of aldehyde 15 with the di-n-butylboronyl (Z)-enolate 34^{23} provided the Evans' ($2 S, 3 R$)-syn-aldol adduct 35 as the only detectable product ($59 \%,>20: 1$ syn) in which the resident chirality on the optically active oxazolidinone dictates the relative and absolute stereochemistry at the newly introduced centers with reaction of the nonchelated boron enolate through a closed-chair transition state (Scheme 6). $\mathrm{Bu}_{3} \mathrm{SnH}$ reductive cleavage of the thiomethyl substituent followed by direct azide displacement ${ }^{37}$ of the alcohol upon Mitsunobu activation ${ }^{38}$ provided 37 with clean

[^5]Scheme 7

inversion of the stereochemistry. ${ }^{39}$ Removal of the optically active oxazolidinone through methanolysis followed by reduction of the azide to the corresponding amine provided diester $39,[\alpha]^{25}{ }_{365}$ $-54(c 0.16,1 \mathrm{~N} \mathrm{HCl}),[\alpha]^{25}{ }_{\mathrm{D}}-5.6(c 0.16,1 \mathrm{~N} \mathrm{HCl}) .{ }^{40}$ Acidcatalyzed hydrolysis of $39\left(3 \mathrm{~N}\right.$ aqueous $\left.\mathrm{HCl}, 100^{\circ} \mathrm{C}, 3 \mathrm{~h}\right)$ provided diacid 33, $[\alpha]^{25}{ }_{365}-59$ ($c 0.11,1 \mathrm{~N} \mathrm{HCl}$), enantiomeric with naturally derived material. Thus, consistent with the original absolute stereochemical assignments, 30,31 , pyrimidoblamic acid, and the bleomycins possess the S configuration as shown. The use of the enolate 40, enantiomeric with 34, provided comparable intermediates possessing the natural S configuration as detailed in the following efforts.

Preparation of (-)-Descarboxamidopyrimidoblamic Acid (4) and Exploration of an Alternative Diastereospecific Synthesis of (-)-Pyrimidoblamic Acid (1). Given the enhanced diastereoselection achieved with use of the aldol versus imine addition reaction of the N-acyloxazolidinone enolates, we elected to investigate the potential of its implemention in an alternative synthesis of (-)-pyrimidoblamic acid (1). Further adaptation of this approach was anticipated to provide a synthesis of 4 through the divergent and late stage introduction of a modified C2 side chain not as easily accessible through use of our initial strategy. Treatment of 15 with the di-n-butylboronyl (Z)-enolate 40^{23} provided ($2 R, 3 S$)-syn-41 as the only detectable reaction product ($67 \%,>20: 1$) (Scheme 7). Reductive desulfurization of 41 effected by treatment with $\mathrm{Bu}_{3} \mathrm{SnH}$ for removal of the thiomethyl group provided 42 (93%). Aminolysis of the N-acyloxazolidinone conducted at $0^{\circ} \mathrm{C}(77 \%)$ followed by Mitsunobu activation of the alcohol 43 and azide displacement ${ }^{37}$ with inversion of the stereochemistry provided 44 in excellent yield (84%) with no evidence of loss of stereochemical integrity at the reaction center and with observance of only a trace amount of the corresponding elimination product. The reverse order of reactions with Mitsunobu activation and azide displacement ${ }^{37}$ of the alcohol 42

[^6]followed by aminolysis of the N-acyloxazolidinone also provided 44 but in lower conversions ($51 \times 40 \%$). Reduction of the azide to the corresponding amine 45 was accomplished best by mild catalytic hydrogenolysis ($\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}, \mathrm{CH}_{3} \mathrm{OH}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 88 \%$), but 45 was also obtained in good yield upon treatment of 44 with $\mathrm{Ph}_{3} \mathrm{P}\left(\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 16 \mathrm{~h}, 71 \%\right)$. Alkylation of 45 with N-BOC-2-bromoethylamine $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 0.4 \mathrm{M}, 25^{\circ} \mathrm{C}\right.$, 48 h) provided 46. Alternative efforts to conduct the alkylation reaction with the corresponding tosylate ($\mathrm{DMF}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{EtOH}$, acetone; 2-4 days, $25^{\circ} \mathrm{C}, 18-30 \%$) provided lower conversions with recovered 45 , and efforts to drive the reaction to completion using more vigorous reaction conditions led to competitive amine elimination (DMF, $50^{\circ} \mathrm{C}$) or dialkylation (DMF, 6-13 kbar, 25 ${ }^{\circ} \mathrm{C}$). Hydrolysis (LiOH) of the ethyl ester followed by acidcatalyzed deprotection of $47,[\alpha]^{25}{ }_{\mathrm{D}}-8.0\left(c 0.2, \mathrm{H}_{2} \mathrm{O}\right)$, provided $(-)$-descarboxamidopyrimidoblamic acid (4), $[\alpha]^{25_{D}}-18$ (c 0.05, $\mathrm{H}_{2} \mathrm{O}$).

Efforts to extend this approach to an alternative synthesis of $(-)$-pyrimidoblamic acid itself have not yet proven successful (eq 1). Significant, although not exhaustive, efforts to alkylate 45

20
with β-chloro-, β-bromo-, or β-tosyl- N-BOC-L-alanine amide under a wide variety of conditions provided little or no 20 and generally provided recovered 45 and products derived from decomposition (elimination) of the alkylating agent. Alternative efforts to activate the alcohol of $\mathbf{4 3}$ toward direct displacement with β-amino- N-BOC-L-alanine amide by formation of the corresponding tosylate (21%) suffered from competitive elimination.

The incorporation of 1-4 into the total synthesis of bleomycin A_{2} and structurally related agents is detailed in the accompanying articles.

Experimental Section

2,4-Bis(ethoxycarbonyl)-6-(dibenzylamino)-5-methylpyrimidine (8). A solution of 2,4,6.tris(ethoxycarbonyl)-1,3,5-triazine ${ }^{18}$ ($5,4.11 \mathrm{mmol}$, 1.22 g) in dioxane (10 mL) under Ar was treated with 1-(dibenzylamino). 1 -propyne ${ }^{21}$ ($6,8.22 \mathrm{mmol}, 1.93 \mathrm{~g}, 2.0$ equiv) at $25^{\circ} \mathrm{C}$, and the resulting reaction solution was warmed at $101^{\circ} \mathrm{C}(21 \mathrm{~h})$. Removal of the solvent in vacuo and flash chromatography ($\mathrm{SiO}_{2}, 4 \times 15 \mathrm{~cm}, 20-40 \% \mathrm{EtOAc}-$ hexane gradient elution) afforded pure $8(1.69 \mathrm{~g}, 1.78 \mathrm{~g}$ theoretical, 95%) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.32(10 \mathrm{H}, \mathrm{m}), 4.73$ $\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 4.45\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.44(2 \mathrm{H}, \mathrm{q}$, $\left.J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.42(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.39\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 165.8$ (e, C-6), 165.7 (e, $\left.\mathrm{CO}_{2} \mathrm{Et}\right), 163.7\left(\mathrm{e}, \mathrm{CO}_{2} \mathrm{Et}\right), 157.9$ (e, $\mathrm{C}-2$), 153.2 (e, C-4), 136.9 (e), 128.5 (o), 127.9 (0) and 127.4 (0 , four $\mathrm{C}_{6} \mathrm{H}_{5}$), 116.3 (e, C-5), 62.1 (e, two $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 52.4 (e, two $\mathrm{CH}_{2} \mathrm{Ph}$), 16.0 ($0, \mathrm{CH}_{3}$), $14.1\left(\mathrm{o}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.0\left(0, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$); IR (film) $\nu_{\text {max }} 3029$, 2982, 2935, 1739, 1560, 1496, 1453, 1427, 1242, 1222, 1091, $800 \mathrm{~cm}^{-1}$; UV (CHCl_{3}) $\lambda_{\max } 278(\epsilon 13400), 244$ ($\epsilon 6700$) nm; CIMS (2methylpropane) $m / e 434$ ($\mathrm{M}^{+}+\mathrm{H}$, base); CIHRMS (2-methylpropane) $m / e 434.2054\left(\mathrm{M}^{+}+\mathrm{H}, \mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}\right.$ requires 434.2080).

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}: \mathrm{C}, 69.28 ; \mathrm{H}, 6.24 ; \mathrm{N}, 9.70$. Found: C, 69.30; H, 6,29; N, 9.45.
6-Amino-2,4-bis(ethoxycarbonyl)-5-methylpyrimidine (9). Method A: A solution of $8(1.42 \mathrm{mmol}, 616 \mathrm{mg})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was treated with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ ($14.2 \mathrm{mmol}, 2.13 \mathrm{~g}, 10$ equiv) at $25^{\circ} \mathrm{C}$, and the resulting reaction mixture was warmed at $40^{\circ} \mathrm{C}(13 \mathrm{~h})$. The mixture was cooled to $0^{\circ} \mathrm{C}$, diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and treated with 2 N aqueous $\mathrm{NaOH}(7.5 \mathrm{~mL})$. Additional 2 N aqueous NaOH was added to further adjust the pH to 9 , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$, and the combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent under reduced pressure and flash chromatography ($\mathrm{SiO}_{2}, 3 \times 15 \mathrm{~cm}, 60 \%$ EtOAc-hexane) afforded pure 9 ($270 \mathrm{mg}, 359$ mg theoretical, 75%) as a white solid identical to that described below.

Method B: A solution of 2,4,6.tris(ethoxycarbonyl)•1,3,5-triazine ${ }^{18}$ ($5,9.0 \mathrm{mmol}, 2.69 \mathrm{~g}$) in anhydrous DMF (45 mL) under Ar was treated with propionamidine hydrochloride ($7,18.0 \mathrm{mmol}, 1.92 \mathrm{~g}, 2.0$ equiv) at $25^{\circ} \mathrm{C}$, and the resulting reaction mixture was warmed at $100^{\circ} \mathrm{C}(72 \mathrm{~h})$. Removal of the solvent in vacuo and recrystallization (EtOAc-hexane) afforded pure $9(1.82 \mathrm{~g}, 2.28 \mathrm{~g}$ theoretical, $80 \%)$ as a white solid: mp $155-156{ }^{\circ} \mathrm{C}$ (white needles, EtOAc-hexane); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 6.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 4.47\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.45(2 \mathrm{H}$, $\left.\mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.44(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.43\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta \mathrm{I} 65.3(\mathrm{e}, \mathrm{C}-6), 164.1\left(\mathrm{e}, \mathrm{C}_{4}-\mathrm{CO}_{2} \mathrm{Et}\right), 163.7\left(\mathrm{e}, \mathrm{C}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}\right), 157.9$ (e, C-2), 153.6 (e, C-4), 114.8 (e, C.5), 62.5 (e, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 62.2 (e, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.1\left(\mathrm{o}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.0\left(\mathrm{o}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 12.2\left(\mathrm{o}, \mathrm{CH}_{3}\right)$; UV $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} 294(\epsilon 3900), 252(\epsilon 7100), 236(\epsilon 2700) \mathrm{nm} ;$ IR (KBr) $\nu_{\max } 3448,3360,2980,2938,1734,1720,1628,1576 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) $253\left(\mathrm{M}^{+}, 1\right), 181$ (100), 135 (19), 107 (16), 81 (21); CIMS (2-methylpropane) m/e (relative intensity) 254 ($\mathrm{M}^{+}+\mathrm{H}$, base); EIHRMS $m / e 253.1060\left(\mathrm{M}^{+}, \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}\right.$ requires 253.1062).

Anal. Caled for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$: $\mathrm{C}, 52.12 ; \mathrm{H}, 5.92 ; \mathrm{N}, 16.58$. Found: C, 51.91; H, 6.11; N, 16.34.

6-Amino-4-(ethoxycarbony1) 2-(hydroxymethyl) 5 -methyl. pyrimidine (10). A solution of 9 ($2.0 \mathrm{mmol}, 506 \mathrm{mg}$) in anhydrous EtOH (10 mL) was cooled to $5^{\circ} \mathrm{C}$ and treated with $\mathrm{NaBH}_{4}(2.0 \mathrm{mmol}, 75.7$ $\mathrm{mg}, 1.0$ equiv) under Ar. After being stirred at $5^{\circ} \mathrm{C}$ for 150 h , the reaction mixture was treated with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(5 \%, 10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and was stirred for 5 h . The mixture was extracted with $20 \% 2$-propanol- $\mathrm{CHCl}_{3}(5 \times 20 \mathrm{~mL}$), and the combined organic extracts were dried (MgSO_{4}). Removal of solvent in vacuo afforded a mixture of the 2-and 4-(hydroxymethyl)pyrimidines (2-CH2OH:4-CH2OH 28:1) as a white solid. The two isomeric alcohols were separated by preparative centrifugal thin-layer chromatography ($\mathrm{SiO}_{2}, 5 \% \mathrm{DMF}-\mathrm{EtOAc}$) to afford pure 10 ($312 \mathrm{mg}, 422 \mathrm{mg}$ theoretical, 70%) as a white solid: $\mathrm{mp} 169^{\circ} \mathrm{C}$ sharp (white needles, EtOAc-hexane); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.77\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 4.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\right.$ $\mathrm{OH}), 4.43\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.55(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 2.22(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.41\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 2 \mathrm{D}^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ NOESY NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$) did not reveal an NOE crosspeak between $\mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{C} 5-\mathrm{CH}_{3}$ for 10 but did so for the minor isomer derived from the NaBH_{4} reduction of 9 ; ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 50 \mathrm{MHz}$) $\delta 166.9$ (e, $\mathrm{C}=\mathrm{O}$), 166.5 (e, C-2), 164.1 (e, C-6), 154.2 (e, C-4), 108.7 (e, C-5), 64.6 (e, $\mathrm{CH}_{2} \mathrm{OH}$), $61.5\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2\left(\mathrm{o}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 11.9\left(\mathrm{o}, \mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}) \nu_{\max } 3396,3340,3168,2986,2936,1722,1664,1542,1508 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) $211\left(\mathrm{M}^{+}, 2\right), 139$ (89), $110(13), 108$ (15), 85 (13), 81 (100); CIMS (2-methylpropane) m / e (relative intensity) 212 ($\mathrm{M}^{+}+\mathrm{H}$, base); EIHRMS $m / e 211.0956\left(\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}\right.$ requires 211.0956).

Anal. Caled for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 51.18; $\mathrm{H}, 6.16 ; \mathrm{N}, 19.91$. Found: C, 50.93, H, 6.39; N, 19.62.

6-Amino-4-(ethoxycarbonyl)-5-methyl-2-(($($ p-tolyksulfonyl)oxy)methyl) pyrimidine (11). A solution of 10 ($2.56 \mathrm{mmol}, 540 \mathrm{mg}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6 mL) was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(5.12 \mathrm{mmol}, 707 \mathrm{mg}, 2.0$ equiv) and $p-\mathrm{TsCl}$ ($2.56 \mathrm{mmol}, 488 \mathrm{mg}, 1.0$ equiv) at $25^{\circ} \mathrm{C}$ under Ar, and the resulting reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 20 h . The crude reaction mixture was filtered through a Celite $\mathrm{pad}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \times 10 \mathrm{~mL}\right)$, and the solvent was removed in vacuo. Chromatography $\left(\mathrm{SiO}_{2}, 3 \times 7 \mathrm{~cm}, 50 \%\right.$ EtOAc-hexane) afforded pure $11(1.00 \mathrm{~g}, 1.01 \mathrm{~g}$ theoretical, $99 \%)$ as a white solid: $\mathrm{mp} 128^{\circ} \mathrm{C}$ sharp (white needles, EtOAc-hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.84\left(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{SO}_{2} \mathrm{C}_{6} H_{4} \mathrm{CH}_{3}\right), 7.33(2 \mathrm{H}$, $\left.\mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 6.31\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 5.01\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\right.$ OTs), $4.41\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$, 2.22 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $1.40\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$); ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right.$, 100 MHz) $\delta 165.7$ (e, $\mathrm{C}=0$), $164.4(\mathrm{e}, \mathrm{C}-2), 159.1(e, \mathrm{C}-6), 152.8$ (e, C-4), 145.5 (e), 131.6 (e), 130.0 (o), 128.1 (o), 112.0 (e, C-5), 70.7 (e, CH_{2}), 62.0 (e, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 21.6 ($\mathrm{o}, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), $14.1\left(\mathrm{o}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $11.7\left(0, \mathrm{CH}_{3}\right)$; IR (KBr) $\nu_{\max } 3457,3328,3181,2980,1720,1654,1570$, $1559 \mathrm{~cm}^{-1}$; CIMS (2-methylpropane) m/e (relative intensity) 366 (M+ $+\mathrm{H}, 18$), 230 (base); FABHRMS (NBA) $m / e 366.1124$ (M ${ }^{+}+\mathrm{H}$, $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ requires 366.1124).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 52.60 ; \mathrm{H}, 5.21 ; \mathrm{N}, 11.51 ; \mathrm{S}, 8.77$. Found: C, 52.84; H, 5.37; N, 11.14; S, 8.69.
N^{α}, N^{β}-Bis((tert-butyloxy)carbonyl)- \boldsymbol{N}^{β} [(6 -amino-4(ethoxycarbonyl)5 -methylpyrimidin- 2 -yl) methylf((\boldsymbol{S}) - β-aminoalanine Amide (13). A solution of 11 ($0.63 \mathrm{mmol}, 248 \mathrm{mg}$) and 12^{13} ($2.5 \mathrm{mmol}, 508 \mathrm{mg}, 4.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$ was treated with $\mathrm{NaHCO}_{3}(1.25 \mathrm{mmol}, 105 \mathrm{mg}$, 2 equiv), and the mixture was stirred under Ar at $25^{\circ} \mathrm{C}$ for 10 h . Removal of solvent in vacuo afforded the crude product, which was dissolved in

THF-saturated aqueous $\mathrm{NaHCO}_{3}(1: 1,5 \mathrm{~mL})$ and treated with di-tertbutyl dicarbonate ($2.5 \mathrm{mmol}, 550 \mathrm{mg}, 0.57 \mathrm{~mL}, 4$ equiv), and the resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 8 h . Water (5 mL) was added, and the mixture was extracted with 20% 2-propanol- $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed in vacuo. Chromatography $\left(\mathrm{SiO}_{2}, 1 \times 3 \mathrm{~cm}, 50-100 \% \mathrm{EtOAc}-\right.$ hexane gradient elution) afforded $13^{41}(276 \mathrm{mg}, 310 \mathrm{mg}$ theoretical, 89%; typically $89-91 \%$ for two steps) as a white solid: $\mathrm{mp} 174^{\circ} \mathrm{C}$ sharp (EtOAc-hexane); $[\alpha]^{22} \mathrm{D}+27.9\left(c 0.19, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $200 \mathrm{MHz}) \delta 7.50-6.70\left(5 \mathrm{H}, \mathrm{m}, \mathrm{NH}_{2}, \mathrm{CONH}_{2}, \mathrm{NHBOC}\right), ~ 4.40-4.10$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}$), $4.30\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.62(1 \mathrm{H}$, dd, $J=5.7,13.9 \mathrm{~Hz}, \mathrm{CHHCH}), 3.45-3.25(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}), 2.00(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.45-1.20\left(21 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (acetone$\left.d_{6}, 200 \mathrm{MHz}\right) \delta 7.80-6.40(5 \mathrm{H}, \mathrm{m}), 4.80-4.10(3 \mathrm{H}, \mathrm{m}), 4.35(2 \mathrm{H}, \mathrm{q}, J$ $=7.0 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{dd}, J=6.0,14.0 \mathrm{~Hz}), 3.60-3.40(1 \mathrm{H}, \mathrm{m}), 2.15(3 \mathrm{H}$, s), $1.45-1.20(21 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 50 \mathrm{MHz}\right) \delta 172.9(\mathrm{e}$, $\mathrm{C}=0), 166.7(\mathrm{e}, \mathrm{C}=0), 164.7(\mathrm{e}, \mathrm{C}=\mathrm{O}), 164.3(\mathrm{e}, \mathrm{C}=\mathrm{O}), 164.0(\mathrm{e}$, C-2), 155.8 (e, C.6), 154.1 (e, C.4), 108.4 (o, C-5), 79.4 (e, C($\left.\mathrm{CH}_{3}\right)_{3}$), $79.0\left(\mathrm{e}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 78.5\left(\mathrm{e}, \mathrm{CH}_{2}\right), 78.4\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}\right), 61.4\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $53.3\left(\mathrm{o}, \mathrm{CH}_{2} \mathrm{CH}\right), 28.3\left(\mathrm{o}, \mathrm{CH}_{3}\right), 28.0\left(0, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.0\left(\mathrm{o}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $11.8\left(\mathrm{o}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; IR (KBr) $\nu_{\max } 3358,2978,2934,1686,1650,1582$ cm^{-1}; CIMS (2-methylpropane) m / e (relative intensity) 497 ($\mathrm{M}^{+}+\mathrm{H}$, base); CIHRMS (2-methylpropane) $m / e 497.2714$ ($\mathbf{M}^{+}+\mathrm{H}, \mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{7}$ requires 497.2724).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{7}$: C, 53.23; $\mathrm{H}, 7.26 ; \mathrm{N}, 16.94$. Found: C, 53.07; H, 7.30; N, 16.71 .
$\boldsymbol{N}^{\alpha}, \boldsymbol{N}^{\boldsymbol{\beta}}$-Bis((tert-butyloxy) carbonyl)- \boldsymbol{N}^{6} [(6-amino-4-carboxypyrimi-din-2-yl) methylf-(S)- $\boldsymbol{\beta}$-aminoalanine Amide (14). A solution of 13 (0.093 mmol, 46 mg) in $\mathrm{THF}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}(3: 1: 1,0.5 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was treated with 1 N aqueous LiOH ($0.19 \mathrm{mmol}, 0.19 \mathrm{~mL}, 2$ equiv), and the mixture was stirred for 4 h . After evaporation of most of the THF- $\mathrm{CH}_{3} \mathrm{OH}$, the aqueous phase was extracted with $\mathrm{CHCl}_{3}(2 \times 2 \mathrm{~mL})$. The aqueous phase was acidified to $\mathrm{pH} 4-5$ with the addition of 1.2 N aqueous HCl and was extracted with 20% 2-propanol- $\mathrm{CHCl}_{3}(5 \times 10 \mathrm{~mL})$. The combined organic extracts were dried (MgSO_{4}), and the solvent was removed in vacuo to afford $14(42 \mathrm{mg}, 44 \mathrm{mg}$ theoretical, 96%) as a white foam: $[\alpha]^{22} \mathrm{D}^{-9} .2\left(c 0.25, \mathrm{CH}_{3} \mathrm{OH}\right)$ (lit ${ }^{4 e}[\alpha]^{25} \mathrm{D}^{-8.9}\left(c \mathrm{c} 1.25, \mathrm{CH}_{3} \mathrm{OH}\right)$); $\boldsymbol{R}_{f} 0.18\left(\mathrm{SiO}_{2}, 7: 3 \mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right) \delta 4.33-$ $4.39\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NBOC}, \mathrm{CH}_{2} \mathrm{CH}\right), 3.5-3.7\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\right), 2.09(3 \mathrm{H}$, br s, $\left.\mathrm{CH}_{3}\right), 1.27-1.13\left(18 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; IR $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \nu_{\max } 3506$, 3412, 3130, 2978, 2896, 1695, 1684, 1519, 1472, 1425, 1360, 1249, 1161, 1043, 732, cm^{-1}; FABHRMS (NBA) m/e $469.2420\left(\mathrm{M}^{+}+\mathrm{H}\right.$, $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{7}$ requires 469.2411).
(+)-Desacetamidopyrimidoblamic Acid (3). A solution of 14 (0.021 mmol, 9.9 mg) in EtOAc (0.1 mL) was cooled to $0^{\circ} \mathrm{C}$ and treated with 3 N HCl in EtOAc (3 mL). The resulting reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min . Removal of solvent in vacuo afforded 3 as a white solid. Pure $3(7.1 \mathrm{mg}, 7.9 \mathrm{mg}$ theoretical, 90%) was obtained by trituration with anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL}):[\alpha]^{22} \mathrm{D}$ $+1.8\left(c 0.55, \mathrm{CH}_{3} \mathrm{OH}\right),[\alpha]^{22} \mathrm{D}+8.1(c 0.15,0.1 \mathrm{~N} \mathrm{HCl}) ;{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 4.47\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\right), 4.41\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2}\right), 3.65$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}$), 2.41 ($3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{3}$); IR (KBr) $\nu_{\text {max }} 3628,3417,3347$, 3006, 1716, 1690, 1684, 1652, 1636, 1576, 1506, 1457, 1395, 1109, 1090 cm^{-1}; FABHRMS (NBA-CsI) $m / e 401.0338\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{3}\right.$ requires 401.0342).

6-Amino-4(ethoxycarbonyl)-5-methylpyrimidine-2-carboxaldehyde (15). A solution of $10(0.3 \mathrm{mmol}, 71 \mathrm{mg})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(6.7 \mathrm{~mL})$ was treated with activated $\mathrm{MnO}_{2}\left(3.36 \mathrm{mmol}, 293 \mathrm{mg}, 10\right.$ equiv) at $25^{\circ} \mathrm{C}$, and the resulting suspension was warmed at $82^{\circ} \mathrm{C}$ for 3 h . The cooled reaction mixture was filtered through a Celite pad $\left(\mathrm{CH}_{3} \mathrm{CN}, 5 \times 10 \mathrm{~mL}\right)$, and the solvent was removed in vacuo. Flash chromatography ($\mathrm{SiO}_{2}, 0.5$ $\times 3 \mathrm{~cm}, 80 \%$ EtOAc-hexane) afforded pure $15(58 \mathrm{mg}, 70 \mathrm{mg}$ theoretical, 83%) as a white foam: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) $\delta 9.93(1 \mathrm{H}, \mathrm{s}$, CHO), $5.75\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 4.49\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.33$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.45\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $50 \mathrm{MHz}) \delta 192.2$ (o, CHO), 165.6 (e, $\left.\mathrm{CO}_{2} \mathrm{Et}\right), 164.5$ (e, C-2), 157.0 (e, $\mathrm{C}-6), 153.9(\mathrm{e}, \mathrm{C}-4), 116.2(\mathrm{e}, \mathrm{C}-5), 62.4\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.5\left(\mathrm{o}, \mathrm{CH}_{3}\right)$, $13.9\left(0, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; IR (KBr) $\nu_{\text {max }} 3351,3009,2973,2932,2902,1731$, 1696, $1656,1621 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) $209\left(\mathrm{M}^{+}, 4\right), 180$ (5), 137 (57), 109 (16), 92 (20), 81 (82), 69 (35), 57 (base); CIMS
(41) The amine displacement of the 2-(chloromethyl)pyrimidine provided 13 in a comparable conversion. In addition, 13 was prepared from imine 16 through catalytic hydrogenation (0.1 wt equiv of $\mathrm{PtO}_{2}, \mathrm{H}_{2}, 25^{\circ} \mathrm{C}, 16 \mathrm{~h}$) and subsequent protection of the secondary amine ($\mathrm{BOC}_{2} \mathrm{O}$), but the sequence detailed in Scheme 2 proved superior.
(2-methylpropane) m / e (relative intensity) $210\left(\mathrm{M}^{+}+\mathrm{H}\right.$, base);EIHRMS $m / e 209.0800\left(\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}\right.$ requires 209.0800).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, $51.65 ; \mathrm{H}, 5.30 ; \mathrm{N}, 20.10$. Found: C, $51.60 ; \mathrm{H}, 5.48$; N, 20.05 .
$\boldsymbol{N}^{\boldsymbol{k}}$-((tert-Butyloxy) carbonyl)- $\boldsymbol{N}^{6} \cdot[$ (6-amino-4-(ethoxycarbonyl)-5methylpyrimidin. 2-yl) methylenejaminof-($\$$)- β-aminoalanine Amide (16). A solution of $15(0.215 \mathrm{mmol}, 45 \mathrm{mg})$ and $12^{13}(0.215 \mathrm{mmol}, 44 \mathrm{mg}, 1.0$ equiv) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL}$) was treated with $4-\AA$ molecular sieves (500 mg) at $25^{\circ} \mathrm{C}$. The resulting suspension was stirred at $25^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was filtered through a Celite pad $\left(\mathrm{CH}_{2}{ }^{-}\right.$ $\left.\mathrm{Cl}_{2}, 5 \times 5 \mathrm{~mL}\right)$. Removal of solvent in vacuo afforded $16(83 \mathrm{mg}, 84.7$ mg theoretical, 98%) as a white foam: $[\alpha]^{25} \mathrm{D}+92.1\left(c 0.45, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.28(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N}), 7.06(2 \mathrm{H}, \mathrm{m}), 5.71$ $(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{HNBOC}), 4.58\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\right), 4.45(2 \mathrm{H}, \mathrm{q}, J$ $\left.=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.11(1 \mathrm{H}, \mathrm{dd}, J=3.3,13.1 \mathrm{~Hz}, \mathrm{CHHCH}), 3.93$ $(1 \mathrm{H}, \mathrm{dd}, J=5.6,13.1 \mathrm{~Hz}, \mathrm{CH} H \mathrm{CH}), 2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.41(12 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{3}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta \mathrm{I} 74.1$ (e, $\left.\mathrm{C}=\mathrm{N}\right), 173.4$ (e, $=0$), 165.8 (e, C=O), 164.2 (e, C-2), 164.0 (e, C-6), 158.0 (e, $\mathrm{C}=0), 152.8(\mathrm{e}, \mathrm{C}-4), 114.9(\mathrm{e}, \mathrm{C}-5), 80.0\left(\mathrm{e}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 62.4\left(\mathrm{e}, \mathrm{CH}_{2}-\right.$ CH_{3}), 62.0 ($\mathrm{O}, \mathrm{CH}_{2} \mathrm{CH}$), 55.3 (e, $\mathrm{CH}_{2} \mathrm{CH}$), 28.2 ($\mathrm{o}, \mathrm{CH}_{3}$), 28.1 (o , $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 14.0\left(0, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3619,3415,3010,2978$, 1725, 1687, 1577, 1501, 1422, 1215, 1072, 1047, $928 \mathrm{~cm}^{-1}$; FABHRMS (NBA-CsI) $m / e 527.1019\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{5}\right.$ requires 527.0977).

Diastereoselective Reaction of the Stannous (2)-Enolate of (4S,5R)-3-((Methylthio)acetyl)-4-methyl-5-phenyl-2-oxazolidinone with 16. Tin(II) trifluoromethanesulfonate ($1.6 \mathrm{mmol}, 663 \mathrm{mg}, 4.0$ equiv) was dissolved in dry THF (2 mL) under N_{2}, cooled to $-78^{\circ} \mathrm{C}$, and treated sequentially with ($4 S, 5 R$)-3-((methylthio)acetyl)-4-methyl-5-phenyl-2oxazolidinone ${ }^{23}$ ($0.78 \mathrm{mmol}, 211 \mathrm{mg}, 2.0$ equiv) in dry THF (2 mL) and $\mathrm{iPr}_{2} \mathrm{NEt}$ ($1.75 \mathrm{mmol}, 226 \mathrm{mg}, 0.31 \mathrm{~mL}, 4.4$ equiv). The mixture was stirred for $1 \mathrm{hat}-20^{\circ} \mathrm{C}$ for complete enolization, and the reaction mixture was recooled to $-78^{\circ} \mathrm{C}$. A solution of $16(0.40 \mathrm{mmol}, 157 \mathrm{mg})$ in dry THF (2 mL) was added, and the reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$, where it was stirred for 12 h . The reaction mixture was poured into a two-layer solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ with vigorous stirring. The organic layer was washed with saturated aqueous $\mathrm{NaCl}(2 \times 7 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Chromatography ($\mathrm{SiO}_{2}, 3 \times 6 \mathrm{~cm}, 5 \% \mathrm{CH}_{3}$. $\mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 213 mg (262 mg theoretical, 81%) of a $82: 5: 13$ mixture of three diastereomers ($87: 13 \mathrm{18a}$ and 18 b) determined to be the anti product (anti-18a), the corresponding syn product (syn. 18a), and third diastereomer, anti-18b, possessing the undesired $3 R$ configuration. Upon prolonged reaction times, the ratio of the three products changed (24 h , $0^{\circ} \mathrm{C}, 46: 39: 15$), indicating the in situ epimerization of the C 2 thiomethyl center, but the critical 18a:18b ratio remained unchanged (85-87:1513). Preparative HPLC separation $\left(\mathrm{SiO}_{2}, 97: 3 \mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}\right)$ of the mixture of products afforded anti-18a (160 mg), syn-18a (10 mg), and the third diastereomer (anti-18b, 24 mg) as white solids.

Ethyl 2(R)-[1•[[2(S)-[((tert-Butyloxy) carbonyl)amino]-2-carbamoylethyl $]$ mino $]-2-[(4,5,5)$-4-methyl-5-phenyl-2-oxazolidinyl)carbonyl]-2(R)-(methylthio)ethyl]-6-amino-5-methylpyrimidine-4-carboxylate (anti18a). Mp 124-127 ${ }^{\circ} \mathrm{C}$ (EtOAc-hexane); $\boldsymbol{R}_{f} 0.34$ ($10 \% \mathrm{CH}_{3} \mathrm{OH}-$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $[\alpha]^{25} \mathrm{D}-27.8\left(c 0.44, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 7.50-7.20(5 \mathrm{H}, \mathrm{m}), 6.97(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.81(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $7.2 \mathrm{~Hz}), 5.74(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 4.94(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 4.84(1 \mathrm{H}$, $\mathrm{dq}, J=6.5,7.2 \mathrm{~Hz}), 4.44(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{d}, J=11.2$ $\mathrm{Hz}), 3.98(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.08(1 \mathrm{H}, \mathrm{dd}, J=3.1,13.1 \mathrm{~Hz}), 2.62(1 \mathrm{H}$, br s $)$, $2.25(3 \mathrm{H}, \mathrm{s}), 2.14(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.36(9 \mathrm{H}, \mathrm{s}), 0.99$ $(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 174.1,169.5,166.0$, $165.2,164.3,155.7,153.0,152.7,132.7,128.6,128.5,125.5,111.2,79.3$, 78.7, 64.1, 61.5, 55.0, 53.2, 49.2, 46.2, 27.9, 14.6, 13.9, 11.8, 11.3; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3416,2985,1777,1725,1689,1612,1570,1363,1223$, $1196,1120,1070 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e 660.2820\left(\mathrm{M}^{+}+\mathrm{H}\right.$, $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{8} \mathrm{~S}$ requires 660.2816).

Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{8} \mathrm{~S}$: $\mathrm{C}, 54.59 ; \mathrm{H}, 6.26 ; \mathrm{N}, 14.87$. Found: C, 54.39; H, 6.14; N, 14.52.

Ethyl 2(R)-[1-[12(S)-[((tert-Butyloxy) carbonyl)amino]-2-carbamoylethyl]amino $]-2-[(4 S, 5 R)-4$ methyl-5-phenyl-2-oxazolidinyl)carbonyl] 2(S). (methylthio) ethyl-6-amino-5-methylpyrimidine-4-carboxylate (syy18a). Mp 123-135 ${ }^{\circ} \mathrm{C}$ (EtOAc-hexane); $\boldsymbol{R}_{f} 0.30$ ($10 \% \mathrm{CH}_{3} \mathrm{OH}-$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\left[\alpha{ }^{25}{ }_{\mathrm{D}}-6.5\left(c 0.39, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)\right.$ $\delta 7.50-7.20(5 \mathrm{H}, \mathrm{m}), 5.69(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 5.29(1 \mathrm{H}, \mathrm{d}, J=10.6$ $\mathrm{Hz}), 4.65(1 \mathrm{H}, \mathrm{dq}, J=6.5,7.1 \mathrm{~Hz}), 4.35(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 2.88(1 \mathrm{H}$, $\mathrm{dd}, J=6.7,13.0 \mathrm{~Hz}$), $2.80(1 \mathrm{H}, \mathrm{dd}, J=5.6,12.7 \mathrm{~Hz}$), $2.11(3 \mathrm{H}, \mathrm{s}), 2.10$ $(3 \mathrm{H}, \mathrm{s}), 1.41(9 \mathrm{H}, \mathrm{s}), 1.34(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 0.77(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz})$;

$152.1,151.8,132.9,132.6,128.2,125.2,110.3,78.4,78.2,61.4,60.5$, $54.0,53.2,47.7,46.1,27.9,14.3,13.8,11.4,11.3 ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3515$, $3413,1778,1687,1612,1570,1450,1368,1223,1199,1075 \mathrm{~cm}^{-1}$; FABHRMS (NBA-CsI) m/e $792.1800\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{8} \mathrm{~S}\right.$ requires 792.1792).

Ethyl 2(S)-[1-[[2(S)-[((tert-Butyloxy) carbonyl)amino -2 carbamoyl-ethyl]amino]-2-[((4S,5R)-4-methyl-5-phenyl-2-oxazolidinyl)carbonyl]-2(S)-(methylthio)ethyl-6-amino-5-methylpyrimidine-4-carboxylate (anti18b). Mp 111-114 ${ }^{\circ} \mathrm{C}$ (EtOAc-hexane); $R_{f} 0.32$ ($10 \% \mathrm{CH}_{3} \mathrm{OH}-$ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}+14.8\left(c 0.27, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ $\delta 7.50-7.25(5 \mathrm{H}, \mathrm{m}), 5.87(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{d}, J=10.6$ $\mathrm{Hz}), 4.94(1 \mathrm{H}, \mathrm{dq}, J=6.5,7.2 \mathrm{~Hz}), 4.42(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.15(1 \mathrm{H}$, $\mathrm{d}, J=10.6 \mathrm{~Hz}), 4.04(1 \mathrm{H}, \mathrm{m}), 2.87(1 \mathrm{H}, \mathrm{dd}, J=3.5,13.2 \mathrm{~Hz}), 2.75$ $(1 \mathrm{H}, \mathrm{dd}, J=6.0,13.1 \mathrm{~Hz}), 2.17(3 \mathrm{H}, \mathrm{s}), 2.02(3 \mathrm{H}, \mathrm{s}), 1.42(3 \mathrm{H}, \mathrm{t}, J=$ $7.2 \mathrm{~Hz}), 1.41(9 \mathrm{H}, \mathrm{s}), 0.81(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (CD ${ }_{3} \mathrm{OD}$, 100 MHz) $\delta 176.6,171.0,167.7,167.5,165.8,157.5,154.3,153.8,135.2$, $129.8,129.5,127.0,112.0,80.5,80.2,65.4,63.0,55.7,55.3,51.0,48.5$, 28.7, 14.6, 14.5, 12.2, 12.0; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3403,2993,1778,1723$, $1687,1612,1573,1452,1364,1221,1198,1071 \mathrm{~cm}^{-1}$; FABHRMS (NBACsI) $m / e 792.1760\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{8} \mathrm{~S}\right.$ requires 792.1792).

Ethyl 2(S)-[1-[[2(S)-[((tert-Butyloxy) carboayl)amino]-2-carbamoylethyl]amino $]-2-[((4 S, 5 R)-4$ methyl-5-phenyl-2-oxazolidinyl) carbonyl]-ethyl]-6-amino-5-methylpyrimidine- 4-carboxylate (19). A solution of anti-18a ($0.29 \mathrm{mmol}, 192 \mathrm{mg}$) in $\mathrm{C}_{6} \mathrm{H}_{6}(2 \mathrm{~mL})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ ($0.87 \mathrm{mmol}, 250 \mathrm{mg}, 3.0$ equiv) and AIBN ($0.042 \mathrm{mmol}, 7 \mathrm{mg}, 0.15$ equiv) and was warmed at $80^{\circ} \mathrm{C}(45 \mathrm{~min})$ under N_{2}. The mixture was allowed to cool to $23^{\circ} \mathrm{C}$, and the solvent was evaporated in vacuo. Flash chromatography ($\mathrm{SiO}_{2}, 3 \times 10 \mathrm{~cm}, 5 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 19 as a white solid ($162 \mathrm{mg}, 178 \mathrm{mg}$ theoretical, 91%): $\mathrm{mp} 122-124^{\circ} \mathrm{C}$ (EtOAc-hexane); $R_{f} 0.28\left(10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]^{25} \mathrm{D}-19.3$ (c $\left.0.29, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.43(1 \mathrm{H}$, $\mathrm{m}), 7.40-7.20(5 \mathrm{H}, \mathrm{m}), 6.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.74(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=7.2 \mathrm{~Hz}), 5.58(1 \mathrm{H}, \mathrm{br} s), 5.47(1 \mathrm{H}, \mathrm{m}), 4.76(1 \mathrm{H}, \mathrm{dq}, J=6.6,7.2 \mathrm{~Hz})$, $4.41(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 4.27(1 \mathrm{H}, \mathrm{m}), 4.02(1 \mathrm{H}, \mathrm{m}), 3.47(1 \mathrm{H}, \mathrm{dd}, J$ $=8.4,16.0 \mathrm{~Hz}), 3.28(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}), 3.15(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz})$, $2.62(1 \mathrm{H}, \mathrm{dd}, J=7.0,13.1 \mathrm{~Hz}), 2.19(3 \mathrm{H}, \mathrm{s}), 1.43(9 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}$, $\mathrm{t}, J=7.1 \mathrm{~Hz}), 0.90(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ ס 176.2, 172.0, 168.8, 167.4, 165.6, 157.5, 154.5, 154.2, 135.0, 129.4, $129.2,126.9,111.1,80.5,80.1,62.8,61.0,55.7,55.2,49.7,41.4,28.4$, 14.7, 14.2, 11.8; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3415,3010,1780,1689,1611,1569$, 1493, $1370,1223,1197,1069 \mathrm{~cm}^{-1}$; FABHRMS (NBA-CsI) m / e $746.1914\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{8}\right.$ requires 746.1914).

Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{8}$: $\mathrm{C}, 56.74 ; \mathrm{H}, 6.41 ; \mathrm{N}, 15.98$. Found: C, 56.72; H, 6.31; N, 15.47.

Similar treatment of syn-18a provided 19, identical in all respects.
N^{2}-($\left(\right.$ tert-Butyloxy) carbonyl)- \boldsymbol{N}^{6}-[1-amino-3(S)-(6-amino-4-(ethoxy-carbonyl)-5-methylpyrimidin-2-yl)propion-3-yl]-(S)- β-aminoalanine Amide (20). Solid $19(0.16 \mathrm{mmol}, 99 \mathrm{mg})$ was treated with an ethanolic solution of $\mathrm{NH}_{3}(16 \%, 20 \mathrm{~mL})$, and the solution was stirred for 1.5 h at $0^{\circ} \mathrm{C}$. The solvent was evaporated in vacuo. Flash chromatography ($\mathrm{SiO}_{2}, 3 \times 5$ $\mathrm{cm}, 10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 20 as a white solid ($59 \mathrm{mg}, 73 \mathrm{mg}$ theoretical, 80%): mp 157-159 ${ }^{\circ} \mathrm{C}$ (iPrOH-hexane) (lit ${ }^{46} \mathrm{mp}$ 159-162 $\left.{ }^{\circ} \mathrm{C}(i \mathrm{PrOH})\right) ; R_{f} 0.32\left(20 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{3}\right) ;[\alpha]^{25} \mathrm{D}-10.8$ (c 0.36, $\mathrm{EtOH})\left(\mathrm{lit}^{4 \mathrm{k}}[\alpha]^{25} \mathrm{D}-7.5(c 1.0, \mathrm{EtOH})\right.$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ $\delta 4.31(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{m}), 3.88(1 \mathrm{H}, \mathrm{dd}, J=4.9,8.8 \mathrm{~Hz})$, $2.69(2 \mathrm{H}, \mathrm{m}), 2.53(1 \mathrm{H}, \mathrm{dd}, J=5.0,15.0 \mathrm{~Hz}), 2.45(1 \mathrm{H}, \mathrm{dd}, J=8.9$, $15.0 \mathrm{~Hz}), 2.04(3 \mathrm{H}, \mathrm{s}), 1.35(9 \mathrm{H}, \mathrm{s}), 1.29(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 176.5,176.4,168.3,167.7,165.9,157.8,154.4$, $111.5,80.8,63.0,62.0,55.7,50.0,42.0,28.7,14.5,12.1$; IR (neat) $\nu_{\max }$ 3416, 2978, 1727, 1678, 1611, 1517, 1423, 1214, 1046, $929 \mathrm{~cm}^{-1}$; FABHRMS (NBA-CsI) $m / e 586.1396\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{7} \mathrm{O}_{6}\right.$ requires 586.1390).
N^{α}-((tert-Butyloxy)carbonyl)- \boldsymbol{N}^{β}-[1-amino-3(S) (6-amino-4-carboxy-5-methylpyrimidin-2-yl) propion-3-ylf(S)- β-aminoalanine Amide (21). A solution of $20(0.046 \mathrm{mmol}, 20.7 \mathrm{mg})$ in $\mathrm{THF}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}(3: 1: 1$, 0.5 mL) at $0^{\circ} \mathrm{C}$ was treated with aqueous $1 \mathrm{~N} \mathrm{LiOH}(0.07 \mathrm{mmol}, 0.07$ $\mathrm{mL}, 1.5$ equiv), and the mixture was stirred for 1.5 h . After evaporation of most of the THF- $\mathrm{CH}_{3} \mathrm{OH}$, the aqueous phase was acidified to $\mathrm{pH} 4-5$ with the addition of aqueous 1.2 N HCl and the solvent was evaporated in vacuo. The residue was charged onto a column of Dowex ($1 \times 8 \mathrm{~cm}$, acetate form, $50-100$ mesh). The column was washed with $\mathrm{H}_{2} \mathrm{O}$, and subsequent elution with $6 \% \mathrm{HOAc}-\mathrm{H}_{2} \mathrm{O}$ afforded 21 as a white powder ($17.6 \mathrm{mg}, 19 \mathrm{mg}$ theoretical, 91%): $\mathrm{mp} 220-222^{\circ} \mathrm{C}$ (EtOH-hexane) (lit ${ }^{\text {ta }} \mathrm{mp} 220-222^{\circ} \mathrm{C}(\mathrm{EtOH})$); $\boldsymbol{R}_{f} 0.58$ (4:1:1 $i \mathrm{PrOH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}$); $[\alpha]^{25}{ }_{\mathrm{D}}-35.6\left(c 0.81, \mathrm{H}_{2} \mathrm{O}\right)$ (lit $[\alpha]^{28} \mathrm{D}-33.6^{4 \mathrm{a}}$ and $-32.8^{4 \mathrm{~b}}(c$ 0.75, $\left.\mathrm{H}_{2} \mathrm{O}\right)$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right) \delta 4.17(2 \mathrm{H}, \mathrm{m}), 3.16(1 \mathrm{H}, \mathrm{m}), 3.03$
$(1 \mathrm{H}, \mathrm{m}), 2.76(2 \mathrm{H}, \mathrm{m}), 1.93(3 \mathrm{H}, \mathrm{s}), 1.30(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$, $100 \mathrm{MHz}) \delta 174.6,169.0,166.5,161.1,157.6,154.2,112.9,81.6,60.6$, $52.1,48.5,36.3,28.6,12.2$; IR (neat) $\nu_{\max } 3423,3189,1720,1685,1479$, 1258, 1161, 1022,878 cm^{-1}; FABHRMS (NBA-CsI) m/e 426.2118 (M+ $+\mathrm{H}, \mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{6}$ requires 426.2101).
(-)-Pyrimidoblamic Acid (1). The solid 21 ($0.005 \mathrm{mmol}, 2.1 \mathrm{mg}$) was treated with $3 \mathrm{~N} \mathrm{HCl}-E t O A c(0.5 \mathrm{~mL})$, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . The solvent was evaporated in vacuo to give pure 1 hydrochloride ($2.2 \mathrm{mg}, 2.2 \mathrm{mg}$ theoretical, 100%) as a clear, hygroscropic solid: $R_{f} 0.32$ ($4: 1: 1$ i $\mathrm{PrOH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}$); $[\alpha]^{25} \mathrm{D}-26.7$ (c 0.12, $\left.\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right) \delta 4.24(1 \mathrm{H}, \mathrm{dd}, J=7.9,7.9 \mathrm{~Hz}), 4.12$ $(1 \mathrm{H}, \mathrm{dd}, J=4.5,6.6 \mathrm{~Hz}), 3.21(1 \mathrm{H}, \mathrm{dd}, J=4.5,13.7 \mathrm{~Hz}), 3.08(1 \mathrm{H}$, dd, $J=6.6,13.7 \mathrm{~Hz}), 2.89(1 \mathrm{H}, \mathrm{dd}, J=5.4,15.8 \mathrm{~Hz}), 2.82(1 \mathrm{H}, \mathrm{dd}$, $J=7.4,15.8 \mathrm{~Hz}), 2.22(3 \mathrm{H}, \mathrm{s})$; IR (neat) $\nu_{\max } 3456,3247,1695,1681$, $1557,1161,1078,820 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e 326.1564\left(\mathrm{M}^{+}+\right.$ $\mathrm{H}, \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{7} \mathrm{O}_{4}$ requires 326.1577).

Ethyl 2(R)-[1-[[2(S)-[((tert-Butyloxy)carbonyl)amino]-2-carbamoylethyl]amino $]-2-[((4 S, 5 R)-4$ methyl-5-phenyl-2-oxazolidinyl)carbonylf-ethyl]-6-amino-5-methylpyrimidine-4-carboxylate (22). A solution of 18b ($0.09 \mathrm{mmol}, 58 \mathrm{mg}$) in $\mathrm{C}_{6} \mathrm{H}_{6}(2 \mathrm{~mL})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(0.26$ mmol, $77 \mathrm{mg}, 3$ equiv) and AIBN ($6.02 \mathrm{mmol}, 3 \mathrm{mg}, 0.15$ equiv), and the solution was warmed at $80^{\circ} \mathrm{C}(45 \mathrm{~min})$ under N_{2}. The mixture was allowed to cool to $23^{\circ} \mathrm{C}$, and the solvent was evaporated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 3 \times 3 \mathrm{~cm}, 5 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded $22(49$ $\mathrm{mg}, 53 \mathrm{mg}$ theoretical, 92%) as a white solid: $\mathrm{mp} 121-123^{\circ} \mathrm{C}$ (EtOAchexane); $\boldsymbol{R}_{f} 0.28$ ($10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $[\alpha]^{25} \mathrm{D}-1.1$ (c 0.18 , $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.40-7.20(6 \mathrm{H}, \mathrm{m}), 6.40(1 \mathrm{H}$, $\mathrm{m}), 5.79(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.71(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 5.50(2 \mathrm{H}, \mathrm{m}), 4.77(1 \mathrm{H}$, $\mathrm{dq}, J=6.6,7.2 \mathrm{~Hz}), 4.42(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.35(1 \mathrm{H}, \mathrm{dd}, J=5.5$, $7.5 \mathrm{~Hz}), 4.11(1 \mathrm{H}, \mathrm{m}), 3.39(2 \mathrm{H}, \mathrm{m}), 3.16(1 \mathrm{H}, \mathrm{m}), 2.71(1 \mathrm{H}, \mathrm{dd}, J=$ $6.5,13.0 \mathrm{~Hz}), 2.18(3 \mathrm{H}, \mathrm{s}), 1.45(9 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 0.91$ $(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (CD $\left.{ }_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 176.4,172.2$, 168.1, 167.5, 165.6, 157.5, 154.6, 154.3,135.1, 129.5, 129.3,126.9,111.1, $80.5,80.1,62.8,60.9,55.7,55.5,49.8,41.6,32.5,14.6,14.3,11.9$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3418,3018,2981,1729,1687,1611,1573,1455,1368$, $1215,1122,1069,780 \mathrm{~cm}^{-1}$; FABHRMS (NBA-CsI) $m / e 746.1944$ (M $^{+}$ $+\mathrm{Cs}, \mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{8}$ requires 746.1914).
N^{α}-((tert-Butyloxy)carbonyl)- \boldsymbol{N}^{β}-[1-amino-3(R)-(6-amino-4-(ethoxy-carbonyl)-5-methyipyrimidin-2-yl)propion-3-yl](S)- β-aminoalanine Amide (23). Compound 22 ($0.064 \mathrm{mmol}, 39 \mathrm{mg}$) was subjected to aminolysis as described for 19 to provide $23(24 \mathrm{mg}, 29 \mathrm{mg}$ theoretical, 82%) as a white solid: mp $69-72^{\circ} \mathrm{C}$ ($i \mathrm{PrOH}$-hexane) (lit ${ }^{4 \mathrm{a}} \mathrm{mp} 64-66^{\circ} \mathrm{C}(i \mathrm{PrOH})$); $R_{f} 0.32\left(20 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{3}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}+38(c 0.57, \mathrm{EtOH})\left(\mathrm{lit}^{4 a}\right.$ $[\alpha]^{25}{ }_{\mathrm{D}}+14.8(c 1.0, \mathrm{EtOH})$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 4.31(2 \mathrm{H}$, $\mathrm{q}, J=7.1 \mathrm{~Hz}), 4.01(1 \mathrm{H}, \mathrm{m}), 3.88(1 \mathrm{H}, \mathrm{dd}, J=5.3,8.3 \mathrm{~Hz}), 2.75(1 \mathrm{H}$, dd, $J=5.3,12.4 \mathrm{~Hz}), 2.68(1 \mathrm{H}, \mathrm{dd}, J=6.4,10.4 \mathrm{~Hz}), 2.47(2 \mathrm{H}, \mathrm{m})$, $2.04(3 \mathrm{H}, \mathrm{s}), 1.33(9 \mathrm{H}, \mathrm{s}), 1.29(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (CD3OD, $100 \mathrm{MHz}) \delta 176.7,168.4,167.8,165.9,157.8,154.4,111.4,80.7,63.0$, 61.9, 55.8, 50.0, 41.8, 28.7, 14.5, 12.1; IR (neat) $\nu_{\max } 3407,2996,1725$, $1653,1609,1519,1474,1420,1215,1047,927,880 \mathrm{~cm}^{-1}$; FABHRMS (NBA-CsI) $m / e 586.1396\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{7} \mathrm{O}_{6}\right.$ requires 586.1390).
\boldsymbol{N}^{α}-((tert-Butyloxy)carbonyl)- \boldsymbol{N}^{β}-[1-amino-3(R)-(6-amino-4-carboxy-5-methylpyrimidin-2-yl)propion-3-yl]-($\$$)- β-aminoalanine Amide (24). Compound 23 ($0.022 \mathrm{mmol}, 9.9 \mathrm{mg}$) was subjected to hydrolysis and purification as described for 20 to provide $24(8.8 \mathrm{mg}, 9.3 \mathrm{mg}$ theoretical, 94\%): mp 221-223 ${ }^{\circ} \mathrm{C}$ (EtOH-hexane) (lit ${ }^{4 \mathrm{a}} \mathrm{mp} 221^{\circ} \mathrm{C}$); $\boldsymbol{R}_{f} 0.58$ (4: $\left.1: 1, i \mathrm{PrOH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}\right) ;[\alpha]^{25_{\mathrm{D}}}+20.8\left(c 0.44, \mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{lit}^{4 a}[\alpha]^{25} \mathrm{D}\right.$ $\left.+20.8\left(c 0.65, \mathrm{H}_{2} \mathrm{O}\right)\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right) \delta 4.08(2 \mathrm{H}, \mathrm{m}), 3.06$ $(2 \mathrm{H}, \mathrm{m}), 2.76(2 \mathrm{H}, \mathrm{m}), 2.00(3 \mathrm{H}, \mathrm{s}), 1.30(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (CD30D, $100 \mathrm{MHz}) 174.5,174.3,168.4,166.5,160.9,157.6,152.9,113.9,81.7$, 61.0, 52.0, 48.5, 35.7, 28.6, 12.2; IR (neat) $\nu_{\max } 3412,3145,1717,1686$, 1584, I479, 1370, 1258, $1160,873 \mathrm{~cm}^{-1}$; FABHRMS (NBA) m / e $426.2118\left(\mathrm{M}^{+}+\mathrm{H}, \mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{6}\right.$ requires 426.2101).
epi-(+)-Pyrimidoblamic Acid (2). The solid 24 ($0.005 \mathrm{mmol}, 2.2 \mathrm{mg}$) was subjected to acid-catalyzed deprotection in the same fashion as 21 to give epi-(+)-pyrimidoblamic acid hydrochloride ($2,2.4 \mathrm{mg}, 2.4 \mathrm{mg}$ theoretical, 100%) as a clear, hygroscopic solid: $R_{f} 0.32$ ($4: 1: 1 i \mathrm{PrOH}-$ $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}\right) ;[\alpha]{ }^{25}{ }_{\mathrm{D}}+20.1\left(c 0.11, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right)$ $\delta 4.25(1 \mathrm{H}, \mathrm{dd}, J=6.6,6.6 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{dd}, J=5.8,5.8 \mathrm{~Hz}), 3.18$ $(1 \mathrm{H}, \mathrm{dd}, J=5.4,13.5 \mathrm{~Hz}), 3.12(1 \mathrm{H}, \mathrm{dd}, J=6.4,13.6 \mathrm{~Hz}), 2.90(1 \mathrm{H}$, dd, $J=5.8,16.6 \mathrm{~Hz}$), $2.82(1 \mathrm{H}, \mathrm{dd}, J=7.1,16.0 \mathrm{~Hz}), 2.21(3 \mathrm{H}, \mathrm{s}) ;$ IR (neat) $\nu_{\max } 3448,3256,1692,1682,1468,1161,1021,810 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e 326.1567\left(\mathrm{M}^{+}+\mathrm{H}, \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{7} \mathrm{O}_{4}\right.$ requires 326.1577).

Carbamate 25.42 A solution of anti-18a ($52 \mathrm{mg}, 0.079 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{OH}(1 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and treated with NaBH_{4} ($20 \mathrm{mg}, 0.55 \mathrm{mmol}, 7$ equiv) under Ar. After being stirred at $0^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was quenched with the addition of $\mathrm{H}_{2} \mathrm{O}(0.2$ mL). The mixture was extracted with $10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5$ mL), and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography ($\mathrm{SiO}_{2}, 3 \times 5 \mathrm{~cm}, 5 \%$ $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave the corresponding alcohol as a white foam. \mathbf{A} solution of the alcohol ($0.011 \mathrm{mmol}, 4.5 \mathrm{mg}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2$ mL) was treated with pyridine ($20 \mathrm{mg}, 0.25 \mathrm{mmol}$) and $\mathrm{COCl}_{2}(0.087$ mmol, $45 \mu \mathrm{~L}, 1.93 \mathrm{M}$ in toluene) at $25^{\circ} \mathrm{C}$. After being stirred at $25^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was poured into a two-layer solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated aqueous NaHCO_{3}. The organic layer was washed with 10% aqueous HCl , saturated aqueous NaHCO_{3}, and saturated aqueous NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 3 \times 5 \mathrm{~cm}, 5 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave $25(1.7$ $\mathrm{mg}, 4.3 \mathrm{mg}$ theoretical, 40%) as a white foam: $\boldsymbol{R}_{f} 0.33\left(10 \% \mathrm{CH}_{3} \mathrm{OH}-\right.$ $\left.\mathrm{CHCl}_{3}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}+14.5\left(c 0.06, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ $\delta 4.78(1 \mathrm{H}, \mathrm{m}), 4.59(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}), 4.47(1 \mathrm{H}, \mathrm{dd}, J=2.0$, $11.0 \mathrm{~Hz}), 4.30(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.08(1 \mathrm{H}, \mathrm{dd}, J=1.5,11.0 \mathrm{~Hz}), 3.75$ $(1 \mathrm{H}, \mathrm{dd}, J=7.3,13.5 \mathrm{~Hz}), 3.38(1 \mathrm{H}, \mathrm{brs}), 3.21(1 \mathrm{H}, \mathrm{m}), 2.18(3 \mathrm{H}, \mathrm{s})$, $2.05(3 \mathrm{H}, \mathrm{s}), 1.33(9 \mathrm{H}, \mathrm{s}), 1.29(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max }$ 3010, 2976, 2399 (s, $\mathrm{C} \equiv \mathrm{N}$), 1734, 1700, 1521, 1476, 1423, 1215, 1046, $928,876,774,669 \mathrm{~cm}^{-1}$; FABHRMS (NBA-CsI) $m / e 627.1002\left(\mathrm{M}^{+}+\right.$ $\mathrm{Cs}, \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}$ requires 627.1002).

Carbamate $26 . .^{42}$ syn-18a ($0.014 \mathrm{mmol}, 9.1 \mathrm{mg}$) was subjected to reduction and purification as described for 25 to provide the corresponding alcohol ($4.0 \mathrm{mg}, 6.6 \mathrm{mg}$ theoretical, 60%) as a white foam. The alcohol ($0.009 \mathrm{mmol}, 4.0 \mathrm{mg}$) was subjected to carbamate formation in the same fashion as 25 to give $26(1.8 \mathrm{mg}, 4.5 \mathrm{mg}$ theoretical, $42 \%): R_{f} 0.32$ ($10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{3}$); $[\alpha]^{25}{ }_{\mathrm{D}}+18.0\left(c 0.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3}-\right.$ $\mathrm{OD}, 400 \mathrm{MHz}) \delta 4.77(1 \mathrm{H}, \mathrm{m}), 4.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}), 4.32$ $(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.21(1 \mathrm{H}, \mathrm{dd}, J=4.9,10.3 \mathrm{~Hz}), 3.75(1 \mathrm{H}, \mathrm{dd}, J$ $=8.2,10.3 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{dd}, J=4.1,13.0 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{m}), 3.01(1 \mathrm{H}$, dd, $J=8.3,13.0 \mathrm{~Hz}), 2.07(3 \mathrm{H}, \mathrm{s}), 2.05(3 \mathrm{H}, \mathrm{s}), 1.34(9 \mathrm{H}, \mathrm{s}), 1.31(3 \mathrm{H}$, $\mathrm{t}, J=7.2 \mathrm{~Hz})$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3010,2975,2399(\mathrm{~s}, \mathrm{C} \equiv \mathrm{N}), 1732,1699$, $1520,1476,1423,1210,1045,928 \mathrm{~cm}^{-1}$; FABHRMS (NBA-CsI) m/e $627.1021\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}\right.$ requires 627.1002).

Carbamate 27.4^{42} anti-18b ($0.048 \mathrm{mmol}, 32 \mathrm{mg}$) was subjected to reduction and purification as described for 25 to provide the corresponding alcohol as a white foam. The alcohol ($0.009 \mathrm{mmol}, 4.2 \mathrm{mg}$) was subjected to carbamate formation in the same fashion as 25 to provide 27 (3.2 mg , 4.1 mg theoretical, 78%): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 4.80(1 \mathrm{H}$, $\mathrm{m}), 4.72(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}, \mathrm{C} 4 \cdot \mathrm{H}), 4.46(1 \mathrm{H}, \mathrm{dd}, J=1.8,12.0 \mathrm{~Hz})$, $4.33(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.07(1 \mathrm{H}, \mathrm{dd}, J=1.5,12.0 \mathrm{~Hz}), 3.87(1 \mathrm{H}$, $\mathrm{dd}, J=4.5,14.0 \mathrm{~Hz}), 3.37(1 \mathrm{H}, \mathrm{br} s), 3.05(1 \mathrm{H}, \mathrm{dd}, J=4.8,14.0 \mathrm{~Hz})$, $2.17(3 \mathrm{H}, \mathrm{s}), 2.06(3 \mathrm{H}, \mathrm{s}), 1.38(9 \mathrm{H}, \mathrm{s}), 1.28(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.

Methyl3(S)-(6-Amino-4-(methoxycarbonyl)-5-methylpyrimidin-2-yl)3. aminopropionate (31). From 20: Compound 20 ($0.011 \mathrm{mmol}, 5.2 \mathrm{mg}$) was treated with $6 \mathrm{~N} \mathrm{HCl}(0.7 \mathrm{~mL})$, and the mixture was stirred at 105 ${ }^{\circ} \mathrm{C}$ for 20 h . The solvent was evaporated in vacuo and the oily solid was treated with $3 \mathrm{~N} \mathrm{HCl}-\mathrm{CH}_{3} \mathrm{OH}(1 \mathrm{~mL})$, and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h . After evaporation of the solvent, the residue was subjected to chromatography $\left(\mathrm{SiO}_{2}, 1 \times 2 \mathrm{~cm}, 20 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{3}\right)$ to afford 31 ($2.2 \mathrm{mg}, 2.9 \mathrm{mg}$ theoretical, 75%): $R_{f} 0.32\left(25 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{3}\right) ;[\alpha]^{25}$ $+3.4(c 0.15,1 \mathrm{~N} \mathrm{HCl}),[\alpha]^{25}{ }_{365}+36.7(c 0.15,1 \mathrm{~N} \mathrm{HCl}) ;{ }^{1} \mathrm{H} \mathbf{N M R}$ $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 4.66(1 \mathrm{H}, \mathrm{dd}, J=6.4,7.2 \mathrm{~Hz}), 3.96(3 \mathrm{H}, \mathrm{s}), 3.71$ $(3 \mathrm{H}, \mathrm{s}), 3.16(1 \mathrm{H}, \mathrm{dd}, J=6.4,16.4 \mathrm{~Hz}), 3.10(1 \mathrm{H}, \mathrm{dd}, J=7.2,16.4 \mathrm{~Hz})$, 2.18 (3H, s); IR (neat) $\nu_{\max } 3445,1715,1630,1214,1143 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e 269.1255\left(\mathrm{M}^{+}+\mathrm{H}, \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}\right.$ requires 269.1250).

From bleomycin A_{2} : A solution of bleomycin A_{2} ($0.043 \mathrm{mmol}, 5.0$ mg) was subjected to the same conditions detailed above to provide 31 ($0.5 \mathrm{mg}, 1.2 \mathrm{mg}$ theoretical, 41%) identical to the material detailed above: $[\alpha]^{25_{365}}+26(c 0.15,1 \mathrm{~N} \mathrm{HCl})$.

3(S)-(6-Amlno-4-carboxy 5 -methylpy rimldln $2 \cdot$ yl) $3 \cdot$ amlnopropionic Acid (30). The compound 31 ($0.007 \mathrm{mmol}, 1.8 \mathrm{mg}$, from 20) was treated with aqueous $3 \mathrm{~N} \mathrm{HCl}(0.3 \mathrm{~mL})$, and the mixture was stirred

[^7]at $100^{\circ} \mathrm{C}$ for 1 h . The solvent was evaporated in vacuo to afford $30(1.5$ $\mathrm{mg}, 1.6 \mathrm{mg}$ theoretical, $94 \%):[\alpha]^{25}{ }_{365}+39.6(c 0.07,1 \mathrm{~N} \mathrm{HCl}) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}$) $\delta 4.94(1 \mathrm{H}, \mathrm{m}), 3.24(1 \mathrm{H}, \mathrm{dd}, J=5.8,16.2 \mathrm{~Hz}$), $3.10(1 \mathrm{H}, \mathrm{dd}, J=9.0,16.2 \mathrm{~Hz}), 2.25(3 \mathrm{H}, \mathrm{s})$.

The sample of $\mathbf{3 1}$ derived from bleomycin \mathbf{A}_{2} similarly provided $\mathbf{3 0}$: $[\alpha]^{25}{ }_{365}+30(c 0.2,1 \mathrm{NHCl})$.

Methyl3(R)-(6-Amino-4-(methoxycarbonyl)-5-methylpyrimidin-2-yl). 3 -aminoproplonate (32). Compound 23 ($0.012 \mathrm{mmol}, 5.7 \mathrm{mg}$) was subjected to chemical degradation followed by esterification as described for 2D and bleomycin A_{2} to provide 32 ($2.1 \mathrm{mg}, 3.3 \mathrm{mg}$ theoretical, 64\%) identical to 31 except for rotation: $[\alpha]^{25}{ }_{\mathrm{D}}-3.7(c 0.14,1 \mathrm{~N} \mathrm{HCl}),[\alpha]^{25}{ }_{365}$ -39.3 ($c 0.14,1 \mathrm{~N} \mathrm{HCl}$).

3(R)-(6-Amino-4-carboxy-5-methylpyrlmidln-2-yl)-3-aminopropionic Acid (33). Compound 32 ($0.0075 \mathrm{mmol}, 2.0 \mathrm{mg}$) was subjected to hydrolysis as described for 31 to provide 33 ($1.7 \mathrm{mg}, 1.8 \mathrm{mg}$ theoretical, $94 \%)$ identical to 30 except for rotation: $[\alpha]^{25}{ }_{365}-40.3$ (c $0.08,1 \mathrm{~N}$ HCl).

Subjection of 39 to the same hydrolysis conditions also provided 33 identical to that detailed above but of higher enantiomeric purity: $[\alpha]^{2 S_{365}}$ -59 (c 0.11, 1 N HCl).

Ethyl $2-[1(R) \cdot H y d r o x y-2(S) \cdot(m e t h y l t h i o)-2 \cdot[(4 S, 5 R)-4$ methyl-5-phenyl-2-oxazolidinyl) carbonyl]ethyl]-6-amino-5-methylpyrimidine-4-carboxylate (35). A solution of (4S,5R)•3-((methylthio)acetyl)-4-methyl-5-phenyl-2-oxazolidinone ($34,0.15 \mathrm{mmol}, 38 \mathrm{mg}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7$ mL) under N_{2} at $-78^{\circ} \mathrm{C}$ was treated with $\mathrm{Bu}_{2} \mathrm{BOTf}(0.15 \mathrm{mmol}, 41 \mathrm{mg}$, $33 \mu \mathrm{~L}, 1.0$ equiv) followed by $i \operatorname{Pr}_{2} \operatorname{NEt}(0.165 \mathrm{mmol}, 21 \mathrm{mg}, 29 \mu \mathrm{~L}, 1.1$ equiv). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and recooled to $-78^{\circ} \mathrm{C}$. A solution of 15 ($0.038 \mathrm{mmol}, 7.8 \mathrm{mg}, 0.25$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2$ mL) was added, and the reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$, where it was stirred for 3 h . The reaction mixture was poured into a two-phase solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and saturated aqueous NaHCO_{3} (2 mL) with vigorous stirring. The organic layer was washed with saturated aqueous $\mathrm{NaCl}(2 \times 1 \mathrm{~mL})$, dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Chromatography ($\mathrm{SiO}_{2}, 1 \times 4 \mathrm{~cm}, 2 \% \mathrm{CH}_{3}$. $\mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 35 as a white foam ($10 \mathrm{mg}, 18 \mathrm{mg}$ theoretical, 59%): $R_{f} 0.32\left(10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]{ }^{25} \mathrm{D}-8.0\left(c \quad 0.52, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) ~ \$ 7.40-7.20(5 \mathrm{H}, \mathrm{m}), 5.75(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz})$, $5.30(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.26(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 5.13(1 \mathrm{H}, \mathrm{dd}, J=4.0,8.8 \mathrm{~Hz})$, $4.83(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}), 4.39(2 \mathrm{H}, \mathrm{m}), 2.23(3 \mathrm{H}, \mathrm{s}), 2.20(3 \mathrm{H}, \mathrm{s}), 1.40$ $(3 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 0.92(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz})$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3419$, $3018,1778,1729,1690,1612,1570,1521,1443,1368,1213,1671,928$, $756 \mathrm{~cm}^{-1}$; FABHRMS (NBA-CsI) $m / e 607.0632\left(\mathrm{M}^{+}+\mathrm{Cs}\right.$, $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ requires 607.0627).

Ethyl 2-[1(S)-Hydroxy-2.[((4S,5R).4-methyl-5-phenyl-2-oxazoli. dinyl)carbonyljethyl]-6-amino-5-methylpyrimidine-4-carboxylate (36). A solution of $35(0.044 \mathrm{mmol}, 20 \mathrm{mg})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(0.7 \mathrm{~mL})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ ($0.13 \mathrm{mmol}, 38 \mathrm{mg}, 3.0$ equiv) and AIBN ($0.013 \mathrm{mmol}, 3 \mathrm{mg}$, 0.3 equiv) and warmed at $80^{\circ} \mathrm{C}$ for 1 h under N_{2}. The mixture was allowed to cool to $23^{\circ} \mathrm{C}$, and the solvent was evaporated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 1 \times 4 \mathrm{~cm}, 5 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) afforded 36 as a white foam ($15.6 \mathrm{mg}, 17 \mathrm{mg}$ theoretical, 93%): $\boldsymbol{R}_{f} 0.32\left(10 \% \mathrm{CH}_{3^{-}}\right.$ $\mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $[\alpha]^{25_{\mathrm{D}}}-37.2$ (c 0.42, CHCl_{3}); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 7.40-7.20(5 \mathrm{H}, \mathrm{m}), 5.91(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.70(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz})$, $5.15(1 \mathrm{H}, \mathrm{dd}, J=3.3,8.0 \mathrm{~Hz}), 4.80(1 \mathrm{H}, \mathrm{dq}, J=6.8,7.2 \mathrm{~Hz}), 4.41(2 \mathrm{H}$, $\mathrm{q}, J=6.8 \mathrm{~Hz}), 3.61(1 \mathrm{H}, \mathrm{dd}, J=3.6,16.4 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{dd}, J=8.0$, $16.4 \mathrm{~Hz}), 2.19(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 0.90(1 \mathrm{H}, \mathrm{d}, J=6.8$ $\mathrm{Hz})$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3420,3018,1780,1726,1612,1521,1424,1214$, 1043, $928 \mathrm{~cm}^{-1}$; FABHRMS (NBA-CsI) $m / e 561.0747$ (M ${ }^{+}+\mathrm{Cs}$, $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires 561.0750).

Ethyl 2-[1(R) Azido-2-[((4S, 5R)-4-methyl.5-phenyl.2-oxazolidinyl)-carbonyljethyl)-6-amino-5-methylpyrimidine-4-carboxylate (37). Diethyl azodicarboxylate ($0.043 \mathrm{mmol}, 7.5 \mathrm{mg}, 7.0 \mu \mathrm{~L}, 1.2$ equiv) and a 0.8 M benzene solution of hydrazoic acid ${ }^{43}$ ($0.043 \mathrm{mmol}, 54 \mu \mathrm{~L}, 1.2$ equiv) were added sequentially to a solution of $36(0.036 \mathrm{mmol}, 15 \mathrm{mg})$ and $\mathrm{Ph}_{3} \mathrm{P}$ ($0.043 \mathrm{mmol}, 12 \mathrm{mg}, 1.2$ equiv) in dry THF (0.5 mL) at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 16 h at $23^{\circ} \mathrm{C}$. The solvent was evaporated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 1 \times 6 \mathrm{~cm}, 2 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded 37 as a foam ($8.2 \mathrm{mg}, 15.7 \mathrm{mg}$ theoretical, 52%): $R_{f} 0.42$ ($5 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $[\alpha]_{\mathrm{D}}^{2 \mathrm{~s}}+35.6\left(\mathrm{c} 0.53, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta \mathbf{7 . 3 0 - 7 . 1 0 (5 \mathrm { H } , \mathrm { m }) , 5 . 6 5 (1 \mathrm { H } , \mathrm { d } , J = 7 . 2 \mathrm { Hz }) , 5 . 1 4 (2 \mathrm { H } , \mathrm { br } , ~}$ s), $5.00(1 \mathrm{H}, \mathrm{dd}, J=4.8,8.4 \mathrm{~Hz}), 4.75(1 \mathrm{H}, \mathrm{dq}, J=6.8,7.2 \mathrm{~Hz}), 4.37$ $(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 3.50(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, $2.14(3 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 0.83(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) ; \mathrm{IR}$ $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3018,2107,1723,1709,1611,1519,1473,1422,1388$,
(43) Wolff, H. Org. React. 1946, 3, 327.

1218, 1045, $928,757 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e 454.1830\left(\mathrm{M}^{+}+\right.$ $\mathrm{H}, \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{5}$ requires 454.1839).

Methyl3-(6-Amino-4-(ethoxycarhonyl).5-methylpyrimidn-2-yl)-3(R)azidopropionate (38). A solution of 37 ($0.018 \mathrm{mmol}, 8.0 \mathrm{mg}$) in $\mathrm{CH}_{3} \mathrm{OH}$ (0.3 mL) under N_{2} at $0^{\circ} \mathrm{C}$ was treated with $\mathrm{NaOCH}_{3}(0.018 \mathrm{mmol}, 1.0$ mg, 1.0 equiv), and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 min . The reaction mixture was poured into a two-layer solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) and saturated aqueous $\mathrm{NaCl}(1 \mathrm{~mL})$ with vigorous stirring. The organic layer was washed with saturated aqueous $\mathrm{NaCl}(1 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Chromatography $\left(\mathrm{SiO}_{2}, 1 \times 3 \mathrm{~cm}, 2 \% \mathrm{CH}_{3}-\right.$ $\mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 38 as a film ($3.2 \mathrm{mg}, 5.3 \mathrm{mg}$ theoretical, 59%): $\boldsymbol{R}_{\boldsymbol{f}}$ $0.35\left(20 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]^{25} \mathrm{D}+61.6\left(c 0.19, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.13(2 \mathrm{H}, \mathrm{br} s), 4.90(1 \mathrm{H}, \mathrm{dd}, J=5.2,8.8 \mathrm{~Hz})$, $4.42(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}), 3.73(3 \mathrm{H}, \mathrm{s}), 3.04(1 \mathrm{H}, \mathrm{dd}, J=5.2,17.2 \mathrm{~Hz})$, $2.87(1 \mathrm{H}, \mathrm{dd}, J=8.8,17.2 \mathrm{~Hz}), 2.21(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz})$; IR (CHCl_{3}) $\nu_{\max } 3017,2392,1722,1508,1364,1242,1208,1046,924$, $843,745 \mathrm{~cm}^{-1} ;$ FABHRMS (NBA) $m / e 309.1310\left(\mathrm{M}^{+}+\mathrm{H}, \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{4}\right.$ requires 309.1311).

Methyl3-(6-Amino-4-(ethoxycarbonyl)-5-methylpyrimidin-2-yl)•3(R)aminopropionate (39). A solution of $38(0.008 \mathrm{mmol}, 25 \mathrm{mg})$ in THF (0.3 mL) was treated with $\mathrm{Ph}_{3} \mathrm{P}(0.01 \mathrm{mmol}, 4.5 \mathrm{mg}, 2.0$ equiv) in the presence of $\mathrm{H}_{2} \mathrm{O}(5 \mu \mathrm{~L})$, and $\mathrm{HOAc}(5 \mu \mathrm{~L})$ and the mixture was stirred under N_{2} at $25^{\circ} \mathrm{C}$ for 15 h . The solvent was evaporated in vacuo. Flash chromatography ($\mathrm{SiO}_{2}, 1 \times 2 \mathrm{~cm}, 20 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 39 as a white film ($1.9 \mathrm{mg}, 2.3 \mathrm{mg}$ theoretical, 82%): $R_{f} 0.12\left(5 \% \mathrm{CH}_{3}\right.$ -$\left.\mathrm{OH}-\mathrm{CHCl}_{3}\right) ;[\alpha]^{25} \mathrm{D}-5.6(c 0.16,1 \mathrm{~N} \mathrm{HCl}),[\alpha]^{25}{ }_{365}-53.8(c 0.16,1 \mathrm{~N}$ $\mathrm{HCl}) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 4.77(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.27(2 \mathrm{H}, \mathrm{q}, J$ $=7.2 \mathrm{~Hz}), 3.49(3 \mathrm{H}, \mathrm{s}), 3.00(1 \mathrm{H}, \mathrm{dd}, J=5.6,17.4 \mathrm{~Hz}), 2.87(1 \mathrm{H}, \mathrm{dd}$, $J=7.2,17.4 \mathrm{~Hz}), 2.19(3 \mathrm{H}, \mathrm{s}), 1.19(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ $\nu_{\max } 3329,2936,1721,1653,1450,1414,1213,1023,924,739 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e 283.1400\left(\mathbf{M}^{+}+\mathrm{H}, \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}\right.$ requires 283.1406).

3(R) (6 -Amino 4-carboxy-5-methylpyrimidin $\cdot 2 \cdot$ yl)-3-aminopropionic Acid (33). The compound $39(0.0087 \mathrm{mmol}, 2.4 \mathrm{mg})$ was treated with 3 N aqueous $\mathrm{HCl}(0.3 \mathrm{~mL})$, and the mixture was stirred at $100^{\circ} \mathrm{C}$ for 1 h . The solvent was evaporated in vacuo to afford 33 (2.0 $\mathrm{mg}, 2.2 \mathrm{mg}$ theoretical, 91%): $[\alpha]^{25}{ }_{365}-59.3(c 0.11,1 \mathrm{~N} \mathrm{HCl}) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right) \delta 4.94(1 \mathrm{H}, \mathrm{m}), 3.24(1 \mathrm{H}, \mathrm{dd}, J=5.2,17.1 \mathrm{~Hz})$, $3.13(1 \mathrm{H}, \mathrm{dd}, J=7.2,17.1 \mathrm{~Hz}), 2.25(3 \mathrm{H}, \mathrm{s})$; IR (neat) $\nu_{\max } 3438,2921$, $1708,1646,1527,1441,1216,1051,865 \mathrm{~cm}^{-1}$; FABHRMS (NBA) m / e $241.0930\left(\mathrm{M}^{+}+\mathrm{H}, \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4}\right.$ requires 241.0937).

Ethyl 2-[1(S)-Hydroxy-2(R).(methylthio)-2-[((4R,5S).4-methyl.5-phenyl-2-oxazolidinyl) carbonyllethyl]-6-amino-5-methylpyrimidine-4-carboxylate (41). A solution of (4R,5S)-3-((methylthio) acetyl)-4-methyl-5-phenyl-2-oxazolidinone ($40,2.30 \mathrm{mmol}, 576 \mathrm{mg}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) under N_{2} at $-78^{\circ} \mathrm{C}$ was treated with $\mathrm{Bu}_{2} \mathrm{BOTf}$ ($2.30 \mathrm{mmol}, 630$ $\mathrm{mg}, 1.0$ equiv) followed by $i \operatorname{Pr}_{2} \mathrm{NEt}(2.52 \mathrm{mmol}, 326 \mathrm{mg}, 0.44 \mathrm{~mL}, 1.1$ equiv). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , and the reaction mixture was recooled to $-78{ }^{\circ} \mathrm{C}$. A solution of $15(0.57 \mathrm{mmol}, 120 \mathrm{mg}, 0.25$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added, and the reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$ where it was stirred for 3 h . The reaction mixture was poured into a two-phase solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ with vigorous stirring. The organic layer was washed with saturated aqueous $\mathrm{NaCl}(2 \times 5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2}\right.$. SO_{4}), and concentrated in vacuo. Chromatography ($\mathrm{SiO}_{2}, 1 \times 8 \mathrm{~cm}, 2 \%$ $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 41 as a thin film ($180 \mathrm{mg}, 274 \mathrm{mg}$ theoretical, $67 \%): R_{f} 0.32\left(10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]^{25} \mathrm{D}+7.8\left(c 0.18, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.40-7.20(5 \mathrm{H}, \mathrm{m}), 5.75(1 \mathrm{H}, \mathrm{d}, J=7.2$ $\mathrm{Hz}), 5.30(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.26(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 5.13(1 \mathrm{H}, \mathrm{dd}, J=4.0$, $8.8 \mathrm{~Hz}), 4.83(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{dq}, J=6.8,7.2 \mathrm{~Hz}), 4.39$ $(2 \mathrm{H}, \mathrm{m}), 2.23(3 \mathrm{H}, \mathrm{s}), 2.20(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 0.92(3 \mathrm{H}$, $\mathrm{d}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,165.9,165.2$, $163.5,153.2,152.6,133.7,128.6,125.7,125.6,111.1,78.7,73.8,71.2$, $62.0,54.6,48.9,14.5,14.1,13.2,11.9 ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3419,3018$, 1778, 1729, 1690, 1612, 1570, 1521, 1443, 1368, 1213, 1071, 928, 756 cm^{-1}; FABHRMS (NBA-CsI) $m / e 607.0632\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}\right.$ requires 607.0627).

Ethyl 2-[1(R)-Hydroxy-2 $[((4 R, 5 S)-4$-methyl-5-phenyl-2-oxazoli-dinyl)carbonyllethylj-6-amino-5-methylpyrimidine-4-carboxylate (42). A solution of 41 ($0.043 \mathrm{mmol}, 20 \mathrm{mg}$) in $\mathrm{C}_{6} \mathrm{H}_{6}(0.7 \mathrm{~mL})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ ($0.13 \mathrm{mmol}, 38 \mathrm{mg}, 3.0$ equiv) and warmed at $80^{\circ} \mathrm{C}$ for 1 h under \mathbf{N}_{2}. The mixture was allowed to cool to $23^{\circ} \mathrm{C}$, and the solvent was evaporated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 1 \times 3 \mathrm{~cm}, 5 \%\right.$ $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 42 as a white film ($16 \mathrm{mg}, 17 \mathrm{mg}$ theoretical, 93%): $R_{f} 0.32\left(10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}+37.5(c 0.13$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.40-7.20(5 \mathrm{H}, \mathrm{m}), 5.91(2 \mathrm{H}$,
br s), $5.70(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 5.15(1 \mathrm{H}, \mathrm{dd}, J=3.3,8.0 \mathrm{~Hz}), 4.80(1 \mathrm{H}$, $\mathrm{dq}, J=6.8,7.2 \mathrm{~Hz}), 4.41(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}), 3.61(1 \mathrm{H}, \mathrm{dd}, J=3.6$, $16.4 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{dd}, J=8.0,16.4 \mathrm{~Hz}), 2.19(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{t}, J$ $=6.8 \mathrm{~Hz}), 0.90(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $170.6,166.2,165.8,162.9,153.1$ (2C), 133.2, 128.6, 128.5, 125.6, 110.6, $79.0,69.0,61.7,54.6,42.6,14.3,14.0,11.5 ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3420,3018$, $1780,1726,1612,1521,1424,1214,1043,928 \mathrm{~cm}^{-1} ;$ FABHRMS (NBACsI) $m / e 561.0747\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{6}\right.$ requires 561.0750).
3. (6.Amino-4. (ethoxycarbonyl)-5-methylpyrimidin.2•yl).3(R)hydroxypropionamide (43). The agent 42 ($0.14 \mathrm{mmol}, 57 \mathrm{mg}$) was treated with an ethanolic solution of $\mathrm{NH}_{3}(16 \%, 8 \mathrm{~mL})$, and the solution was stirred for 1.5 h at $0^{\circ} \mathrm{C}$. The solvent was evaporated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 1 \times 5 \mathrm{~cm}, 10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded 43 as a white film ($27 \mathrm{mg}, 35 \mathrm{mg}$ theoretical, 77%): $R_{f} 0.12\left(10 \% \mathrm{CH}_{3}-\right.$ $\mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $[\alpha]^{25} \mathrm{D}+35\left(c 0.10, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400$ $\mathrm{MHz}) \delta 4.82(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.30(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 2.67(1 \mathrm{H}, \mathrm{dd}, J=$ $3.6,14.8 \mathrm{~Hz}), 2.50(1 \mathrm{H}, \mathrm{dd}, J=8.8,14.8 \mathrm{~Hz}), 2.04(3 \mathrm{H}, \mathrm{s}), 1.28(3 \mathrm{H}$, $\mathrm{t}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }_{3}, 100 \mathrm{MHz}\right) \delta 176.2,168.2,167.7$, $165.7,154.3,71.9,63.1,43.5,14.5,12.3$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3423,3018$, 1728, 1676, 1522, 1424, 1213, 1046, $928 \mathrm{~cm}^{-1}$; FABHRMS (NBA-CsI) $m / e 401.0224\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}\right.$ requires 401.0226).

3-(6-A mino-4-(ethoxycarbonyl)-5-methylpyrimidin-2-yl)-3(S)axidopropionamide (44). Diethyl azodicarboxylate ($0.19 \mathrm{mmol}, 33 \mathrm{mg}$, 1.2 equiv) and a 0.8 M benzene solution of hydrazoic acid ${ }^{43}(0.48 \mathrm{mmol}$, $0.60 \mathrm{~mL}, 3$ equiv) were added sequentially to a solution of $\mathbf{4 3}(0.16 \mathrm{mmol}$, 41 mg) and $\mathrm{Ph}_{3} \mathrm{P}(0.19 \mathrm{mmol}, 51 \mathrm{mg}, 1.2$ equiv) in dry THF (1.2 mL) at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 36 h at $0^{\circ} \mathrm{C}$. The solvent was evaporated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 1 \times 5 \mathrm{~cm}, 5 \% \mathrm{CH}_{3}-\right.$ $\mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 44 as a white film ($38 \mathrm{mg}, 45 \mathrm{mg}$ theoretical, 84\%): $R_{f} 0.45\left(10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;\left[\alpha{ }^{25}{ }_{\mathrm{D}}-71.7\left(c 0.12, \mathrm{CHCl}_{3}\right)\right.$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 4.65(1 \mathrm{H}, \mathrm{dd}, J=5.6,8.8 \mathrm{~Hz}), 4.31$ $(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 2.80(1 \mathrm{H}, \mathrm{dd}, J=5.2,14.8 \mathrm{~Hz}), 2.66(1 \mathrm{H}, \mathrm{dd}, J$ $=9.6,14.8 \mathrm{~Hz}), 2.05(3 \mathrm{H}, \mathrm{s}), 1.29(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 175.0,167.5,165.8,165.1,154.8,112.0,63.6$, $63.0,39.7,14.4,12.1 ;$ IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3421,3018,2107,1724,1522$, 1424, 1218, $928 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e 294.1313$ (M $^{+}$, $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{O}_{3}$ requires 294.1315).

3-(6-Amino-4-(ethoxycarbonyl)-5-methylpyrimidin-2-yl)-3(5)-aminopropionamide (45). A solution of 44 ($0.09 \mathrm{mmol}, 25 \mathrm{mg}$) in $\mathrm{CH}_{3} \mathrm{OH}$ (4 mL) was stirred with $10 \% \mathrm{Pd}-\mathrm{C}(6 \mathrm{mg})$ for 1 h under a H_{2} atmosphere. The catalyst was removed by filtration through Celite, and the filtrate was concentrated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 1 \times 3 \mathrm{~cm}, 20 \%\right.$ $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 45 as a film ($20 \mathrm{mg}, 23 \mathrm{mg}$ theoretical, 88%): $\boldsymbol{R}_{f} 0.10\left(20 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;\left[\alpha{ }^{25} \mathrm{D}-20.0\left(c 0.12, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}\right.$ NMR (CD $\left.{ }_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 4.31(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $2.74(1 \mathrm{H}, \mathrm{dd}, J=4.0,15.2 \mathrm{~Hz}), 2.49(1 \mathrm{H}, \mathrm{dd}, J=8.4,15.2 \mathrm{~Hz}), 2.04$ $(3 \mathrm{H}, \mathrm{s}), 1.28(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 176.5$, 169.1, 167.8, 165.7, 154.6, 111.0, 63.0, 55.0, 43.1, 14.4, 12.0; IR (neat) $\nu_{\max } 3394,2984,1718,1656,1579,1446,1405,1236,1077,1015 \mathrm{~cm}^{-1}$; FABHRMS (NBA-NaI) $m / e 290.1220\left(\mathbf{M}^{+}+\mathrm{Na}, \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3}\right.$ requires 290.1229).

3-(6-Amino-4(ethoxycarbonyl)-5-methylpyrimidin $2 \cdot$ yl)-3(5)-[(2-(((tert-butyloxy) carbonyl)amino)ethyl)aminolpropionamide (46). A solution of 45 ($0.02 \mathrm{mmol}, 5.0 \mathrm{mg}$) and N-((tert-butyloxy)carbonyl)-2bromoethylamine ($0.04 \mathrm{mmol}, 9.0 \mathrm{mg}, 2.0$ equiv) in DMF ($45 \mu \mathrm{~L}$) was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.025 \mathrm{mmol}, 3.5 \mathrm{mg}, 1.2$ equiv), and the mixture was stirred under Ar at $25^{\circ} \mathrm{C}$ for 2 days. The solvent was evaporated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded 45 as a film ($4.2 \mathrm{mg}, 8.2 \mathrm{mg}$ theoretical, 51%): $R_{f} 0.38$ ($20 \% \mathrm{CH}_{3}$. $\left.\mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]^{25} \mathrm{D}-22.0\left(c 0.075, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $400 \mathrm{MHz}) \delta 4.29(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{m}), 3.02(2 \mathrm{H}, \mathrm{m}), 2.45$ $(2 \mathrm{H}, \mathrm{m}), 2.02(3 \mathrm{H}, \mathrm{s}), 1.28(9 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 176.4,168.1,167.8,165.9,158.5,154.5,80.2$, $63.1,61.6,48.0,41.3,41.1,28.9,14.5,12.1$; IR (neat) $\nu_{\max } 3420,1718$, $1638,1581,1439,1259,865 \mathrm{~cm}^{-1}$; FABHRMS (NBA-CsI) m/e 543.1340 $\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{5}\right.$ requires 543.1332).

3-(6-Amino-4-carboxy-5-methylpyrimidin-2-yl)-3(S)-[(2-(()tertbutyloxy) carbonyl) amino)ethyl) aminoppropionamide (47). A solution of 46 ($0.01 \mathrm{mmol}, 4.2 \mathrm{mg}$) in $\mathrm{THF}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}(3: 1: 1,0.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was treated with aqueous $1 \mathrm{~N} \mathrm{LiOH}(0.015 \mathrm{mmol}, 15 \mu \mathrm{~L}, 1.5$ equiv), and the mixture was stirred for 1.5 h . After evaporation of most of the THF$\mathrm{CH}_{3} \mathrm{OH}$, the aqueous phase was acidified to $\mathrm{pH} 4-5$ with the addition of aqueous 1.2 N HCl and the solvent was evaporated in vacuo. The residue was charged onto a column of Dowex ($1 \times 2 \mathrm{~cm}$; acetate form, $50-100$ mesh). The column was washed with $\mathrm{H}_{2} \mathrm{O}$, and subsequent elution with $6 \% \mathrm{HOAc}-\mathrm{H}_{2} \mathrm{O}$ afforded 47 as a thin film ($3.3 \mathrm{mg}, 3.9 \mathrm{mg}$ theoretical,

85\%): $R_{f} 0.62$ (4:1:1 $\left.i \mathrm{PrOH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}\right) ;[\alpha]^{2 S_{\mathrm{D}}}-8.0$ (c 0.20 , $\left.\mathrm{H}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 4.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.18(2 \mathrm{H}, \mathrm{m})$, $2.87(2 \mathrm{H}, \mathrm{m}), 2.78(1 \mathrm{H}, \mathrm{dd}, J=4.4,16.0 \mathrm{~Hz}), 2.67(1 \mathrm{H}, \mathrm{dd}, J=8.0$, 16.0 Hz), $2.02(3 \mathrm{H}, \mathrm{s}), 1.31(9 \mathrm{H}, \mathrm{s})$; IR (neat) $\nu_{\max } 3333,2964,1676$, $1574,1420,1169 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e 383.2051\left(\mathrm{M}^{+}+\mathrm{H}\right.$, $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{5}$ requires 383.2043).

3-(6-Amino-4-carboxy-5-methylpyrimidin-2-yl)-3(S)-[(2-aminoethyl). aminoppropionamide ((-)-descarboxamidopyrimidoblamic acld, 4). The compound 47 ($0.003 \mathrm{mmol}, 1.2 \mathrm{mg}$) was treated with $3 \mathrm{~N} \mathrm{HCl}-\mathrm{EtOAc}$ (0.3 mL), and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . The solvent was evaporated in vacuo to give pure 4 hydrochloride ($0.9 \mathrm{mg}, 1.0 \mathrm{mg}$ theoretical, 90%) as a clear hygroscopic solid: $R_{f} 0.38$ (4:1:1 $1 \mathrm{PrOH}-$

$\delta 4.66(1 \mathrm{H}, \mathrm{dd}, J=5.6,7.2 \mathrm{~Hz}), 3.36(4 \mathrm{H}, \mathrm{m}), 3.10(1 \mathrm{H}, \mathrm{dd}, J=5.6$, $16.8 \mathrm{~Hz}), 3.02(1 \mathrm{H}, \mathrm{dd}, J=7.2,16.8 \mathrm{~Hz}), 2.18(3 \mathrm{H}, \mathrm{s}) ;$ IR (neat) $\nu_{\max }$ 3491, 3199, 1696, 1627, 1542, 1362, $1203 \mathrm{~cm}^{-1}$; FABHRMS (NBA) m/e $283.1520\left(\mathrm{M}^{+}, \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{3}\right.$ requires 283.1519).

Acknowledgment. We gratefully acknowledge the financial support of the National Institutes of Health (Grant CA42056) and the award of a Glaxo fellowship to T.H. We wish to thank R. F. Menezes for the introduction of improvements in the route to $\mathbf{3}$ and Professor S. M. Hecht for copies of the ${ }^{1} \mathrm{H}$ NMR spectra of desacetamidopyrimidoblamic acid (3) and 14.

[^0]: - Abstract published in Advance ACS Abstracts, May 15, 1994.
 (1) Dedon, P. C.; Goldberg, I. H. Chem. Res. Toxicol. 1992, 5, 311. Ohno, M.; Otsuka, M. In Recent Progress in the Chemical Synthesis of Antibiotics; Lukacs, G., Ohno, M., Eds.; Springer-Verlag: New York, 1990; p 387. Hecht, S. M. Acc. Chem. Res. 1986, 19, 383. Stubbe, J.; Kozarich, J. W. Chem. Rev. 1987,87, 1107. Sugiura, Y.; Takita, T.; Umezawa, H. Metal Ions in Biological Systems 1985, 19, 81. Twentyman, P. R. Pharmacol. Ther. 1984, 23, 417. Povirk, L. F. In Molecular Aspects of Anti-Cancer Drug Action; Neidle, S., Waring, M. J., Eds.; MacMillian: London, 1983. Hecht, S. M. In Bleomycin: Chemical. Biochemical, and Biological Aspects; Hecht, S. M., Ed.; SpringerVerlag: New York, 1979. Umezawa, H. In Bleomycin: Current Status and New Developments; Carter, S. K., Crooke, S. T., Umezawa, H., Eds.; Aca. demic Press: New York, 1978. Umezawa, H. Pure Appl. Chem. 1971, 28, 665.
 (2) Boger, D. L.; Colletti, S. L.; Honda, T.; Menezes, R. M. J. Am. Chem. Soc., preceding paper in this issue.
 (3) Pyrimidoblamic acid structure determination: Yoshioka,T.; Muraoka, Y.; Takita, T.; Maeda, K.; Umezawa, H. J. Antibiot. 1972, $25,625$.
 (4) Pyrimidoblamic acid synthesis: (a) Aoyagi, Y.; Chorghade, M. S.; Padmapriya, A. A.; Suguna, H.; Hecht, S. M. J. Org. Chem. 1990, 55, 6291. (b) Umezawa, Y.; Morishima, H.; Saito, S.; Takita, T.; Umezawa, H.; Kobayashi, S.; Otsuka, M.; Narita, M.; Ohno, M. J. Am. Chem. Soc. 1980, 102, 6630. (c) Otsuka, M.; Narita, M.; Yoshida, M.; Kobayashi, S.; Ohno, M.; Umezawa, Y.; Morishima, H.; Saito, S.; Takita, T.; Umezawa, H. Chem. Pharm. Bull. 1985, 33, 520. (d) Arai, H.; Hagmann, W. K.; Suguna, H.; Hecht, S. M. J. Am. Chem. Soc. 1980, 102, 6631 .
 (5) Boger, D. L.; Menezes, R. M.; Honda, T. Angew. Chem., Int. Ed. Engl. 1993, 32, 273.
 (6) Boger, D. L.; Menezes, R. M.; Dang, Q. J. Org. Chem. 1992; 57, 4333.

[^1]: (16) Boger, D. L.; Honda, T.; Menezes, R. F.; Colletti, S. L. J. Am. Chem. Soc., following paper in this issue. Boger, D. L.; Honda, T. J. Am. Chem. Soc., companion paper in this issue.
 (17) Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis; Academic Press: San Diego, CA, 1987. Boger, D. L. Chem. Rev. 1986, 86, 781. Boger, D. L.; Patel, M. Prog. Heterocycl. Chem. 1989, 1, 30. Boger, D. L. Bull. Chem. Soc. Belg. 1990, 99, 599. Boger, D. L. Tetrahedron 1983, 39, 2869.
 (18) Ott, E. Chem. Ber. 1919, 52, 656. Grundmann, C.; Weisse, G.; Seide, S. Justus Liebigs Ann. Chem. 1952, 577, 77.
 (19) Boger, D. L.; Dang, Q. Tetrahedron 1988, 44, 3379.
 (20) Boger, D. L.; Honda, T. Tetrahedron Lett. 1993, 34, 1567.
 (21) Ireland, R. E.; Anderson, R. C.; Badoud, R.; Fitzsimmons, B. J.; McGarvey, G. J.; Thaisrivongs, S.; Wilcox, C. S. J. Am. Chem. Soc. 1983, 105, 1988.

[^2]: (22) Evans, D. A.; Nelson, J. V.; Taber, T. R. Top. Stereochem. 1982, 13 ,

[^3]: (23) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127.
 (24) Hart, D. J.; Ha, D.-C. Chem. Rev. 1989, 89, 1447. Brown, M. J. Heterocycles 1989, 29, 2225.
 (25) (a) Corey, E. J.; Decicco, C. P.; Newbold, R. C. Tetrahedron Lett. 1991, 32, 5287. (b) Ojima, I.; Habus, I. Tetrahedron Lett. 1990, 31, 4289. (c) Nagao, Y.; Dai, W.-M.; Ochiai, M.; Tsukagoshi, S.; Fujita, E. J. Org. Chem. 1990, 55, 1148 . Nagao, Y.; Dai, W.-M.; Ochiai, M. Tetrahedron Lett. 1988, 29, 6133. (d) Hart, D. J.; Lee, C.-S.; Pirkle, W. H.; Hyon, M. H.; Tsipouras, A. J. Am. Chem. Soc. 1986, 108, 6054. (e) Yamada, T.; Suzuki, H.; Mukaiyama, T. Chem. Lett. 1987, 293, 1986, 915. Yamasaki, N.; Murakami, M.: Mukaiyama, T. Chem. Lett. 1986, 1013. (f) Furukawa, M.; Okawara, T.; Noguchi, Y.; Terawaki, Y. Chem. Pharm. Bull. 1978, 26, 260. (g) Shibasaki, M.; Ishida, Y.; Iwasaki, G.; Iimori, T. J. Org. Chem. 1987, 52, 3488. (h) Georg, G. I.; Kant, J.; Gill, H. S. J. Am. Chem. Soc. 1987, 109, 1129.

[^4]: (31) Nakamura, H.; Yoshioka, T.; Takita, T.; Umezawa, H.; Muraoka, Y.; Iitaka, Y. J. Antibiot. 1976, 29, 762.
 (32) Iitaka, Y.; Nakamura, H.; Nakatani, T.; Muraoka, Y.; Fujii, A.; Takita, T.; Umezawa, H. J. Antibiot. 1978, 31, 1070.
 (33) Takita, T.; Muraoka, Y.; Maeda, K.; Umezawa, H. J. Antibiot. 1968, 21, 79.
 (34) Muraoka, Y.; Takita, T.; Maeda, K.; Umezawa, H. J. Antibiot. 1970, 23, 252.
 (35) For example, see: Marzilli, L. G.; Freyder, C. P. Magn. Reson. Chem. 1991, 29, 338.
 (36) Boger, D. L.; Menezes, R. F.; Yang, W. Bioorg. Med. Chem. Lett. 1992, 2, 959.

[^5]: (37) Loibner, H.; Zbiral, E. Helv. Chim. Acta 1977, 60, 417
 (38) Mitsunobu, O. Synthesis 1981, 1.

[^6]: (39) Some elimination (ca.15-20\%) accompanies the displacement reaction on 36, but no isomeric azide was detected. In the sequence leading to 4 , this competitive reaction was reduced to a trace side reaction by conducting the displacement on the carboxamide 43 .
 (40) Efforts to convert the oxazolidinone to the methyl ester prior to azide introduction led to competitive elimination versus azide introduction, and efforts to reduce the azide prior to oxazolidinone methanolysis led to competitive hydrolysis of the oxazolidinone.

[^7]: (42) Reduction with excess $\mathrm{NaBH}_{4}(\mathrm{EtOH})$ at $25^{\circ} \mathrm{C}$ led to C 4 ethyl ester reduction. Initial attempts to form the cyclic carbamates upon reaction with diethyl carbonate $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and methyl chloroformate $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right.$, pyridine, 25 ${ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 79 \%$) provided corresponding uncyclized methyl carbamate which failed to close to 25-27 upon further treatment with base (DMAP, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DBU, $\mathrm{NaH} ; \mathrm{C}_{6} \mathrm{H}_{6}$, DMF, THF; $25-80{ }^{\circ} \mathrm{C}$). Similarly, treatment with carbonyldiimidazole $\left(\mathrm{C}_{6} \mathrm{H}_{6}, 80^{\circ} \mathrm{C}\right)$ provided the N-carbonylimidazole, which failed to close cleanly to the desired cyclic carbamate.

